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Abstract

In order to have efficient particle acceleration it is fun-
damental that the particles experience, in the accelerating
gap, field amplitudes as uniform and as high as possible
from gap to gap. Because of the unavoidable fabrication
errors, an accelerating structure, when assembled, exhibits
field values lower than the nominal ones and/or not uni-
form. All the usual procedures developed in order to adjust
the parameter deviations responsible of the malfunctioning
of these structures, are based on field amplitude measure-
ments, by using the bead pull technique, which is a very in-
vasive technique. In this paper the philosophy is reversed:
it is assumed that all the information can be got by Soun-
ding the Modes of the whole System (SMS) and correct the
deviation of each frequency mode from its nominal value
by means of an appropriate tuning of the cavities: resort-
ing to a perturbative technique applied to a circuit model
representing this kind of structures, it is possible to calcu-
late the amount of tuning to give to the cavities. It will
be shown that a very good equalization and maximization
of the fields in the cavities can be achieved by using this
technique.

INTRODUCTION

In this paper it will be analyzed the accelerating field op-
timization procedure of a Side Coupled Linac (SCL) which
are very suitable devices for medical applications as cancer
radiotherapy by using protons (protontherapy).

A SCL is a structure formed by a chain of on-axis Acce-
lerating Cavities (AC) and off-axis Coupling Cavities (CC)
each other coupled by means of a slot [1]. Each cavity
resonates at a frequency depending on its geometrical pa-
rameters. The cavities, when coupled, exhibit a peculiar
behaviour: they loose their individuality and resonate on
eigenfrequencies of the whole system, each characterized
by a phase advance between adjacent cavities.

The working frequencies of such a structures is pushed
as high as possible, in such a way to increase the break-
down electric field [2]. This will reduce the longitudinal
dimensions of the linac.

Because of the extremely high frequency of the RF feed-
ers, the fabrication tolerances play a crucial role in the per-
formances of these kinds of devices. The assembling and
brazing procedures give additional random errors to the
whole system. This behaviour leads to serious problems:
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because the structure does not resonate to the nominal fre-
quency, there is a reactive power which flows back to the
feeder (klystron) and this is extremely dangerous for the
klystrons, unless one resorts to special and expensive de-
vices; the field is not uniform from cell to cell; and, even if
uniform, the field is smaller than the nominal value; there-
fore, one needs more power in order to have acceptable
field amplitude values. In any case, without a proper tun-
ing of the system, one has, in the best case (if there are
not extreme reactive power feedbacks towards the klystron
and acceptable uniform fields), to spend much more to have
quite good field level in the cells.

It is worth noting that, after assembling the system, it is
impossible to make direct measurements on the single ca-
vity since it cannot be isolated: the only measurement al-
lowed being on the whole system, the behaviour of which
depends on cooperative dynamics of all cavities. Neverthe-
less one would like to change the parameters of the resona-
tors responsible of the malfunctioning.

It will be described a new conceived tuning method
named System Mode Sounding (SMS) by which only two
probes are necessary, in the first and in the last cavity in
order to span the whole frequency bandwidth. No mechan-
ical device is introduced on the beam-line, no bead pull
measurements are required: the sounding is purely electro-
magnetic. This behaviour makes it very attractive for many
cases. It will be also shown that the application of SMS
produces an equalization and maximization of the field in
the cavities.

THE MODEL

Lumped circuit representation very well suits the behav-
iours of resonant coupling structures, even if one is dealing
with devices working in the Gigahertz range, because the
system modes stay in a narrow bandwidth proportional to
the nominal coupling coefficient; this is irrespective of the
number of cavities. Remembering that an SCL structure is
formed by a certain number of AC cavities and a certain
number of CC off-axis cavities, it is possible to represent
the total structure as a biperiodic chain of resonant circuits.
The first chain is formed by the AC cavities, coupled with
the nearest neighbors (CC) and with the second nearest
neighbors (AC); the second chain is formed by the CC cav-
ities coupled with the nearest neighbors (AC) and with the
second nearest neighbors (CC) as shown in Fig. 1. In the
following, the odd circuits (cells) will represent the AC’s,
while the even ones the CC’s; therefore it is possible to de-
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fine two resonant frequencies, one for the AC’s and another
for the CC’s, respectively, as: fa = (2π)−1(LaCa)1/2 and
fc = (2π)−1(LcCc)1/2.

Figure 1: Circuit representation for a biperiodic chain of
cavities with first (k1) and second nearest neighbor (ka,c).

Let it consider a system half cell ended with R→ 0 and
define the quantities

D =




εii ≡ εi = 1√
2

for i first and last
εi = 1 for i = 2, . . . , N
εij = 0 else,

(1)

f =




fii ≡ fi = fa for i odd
fii ≡ fi = fc for i even
fij = 0 else,

(2)

and

K =




kii±1 = k1

kii±2 = ka for i odd
kii±2 = kc for i even
k22 = kNN = kc

kij = 0 else,

(3)

The circuit equation system

f−1(I +
1
2
D−1KD−1)f−1E = F−2E, (4)

has only N+1 non trivial solution of eigenvectors (Em) and
eigenfrequencies (Fm). It has to be noted that the equa-
tion system representing the circuit which can be found in
the literature, e.g. eq.(25) in [3], is incomplete: indeed the
coupling coefficient k22 and kNN are missing in the sec-
ond and in the last but one equations, respectively. Without
these terms the dispersion relation, eq.(25) in [3], is incor-
rect. A discussion on the reasons of the presence of this
terms will be given in [4].

The eigenvectors are:

Em = D




Am

Bm cos ϕm

Am cos 2ϕm

Bm cos 3ϕm

. . .
Am




, (5)

with ϕm = (m−1)π
N (m = 1, . . . , N + 1).

The dispersion relation can be found in the relevant lit-
erature [3, 5]. In the case of compensated structures [6], it

is interesting to give the eigenfrequency formula

f2
0

F 2
m

= 1−(ka+kc) sin2 ϕm−kcka cos 2ϕm

(1−ka)(1−kc)
+

k1 cos ϕm

[
(1−ka)(1−kc)+cos2 ϕm

(ka−kc)2

k2
1

] 1
2

(1−ka)(1−kc)
,

(6)

where f0 is the π
2 mode frequency. The explicit expression

of the Am and Bm coefficients can be found by using the
eq.(27) in [3] and then by normalizing the eigenvector.

THE PERTURBATION ANALYSIS

Let us consider an equation similar to eq. (4) where the
cell resonant frequencies have small random deviations,
δfi, from their nominal values. This implies a deviation,
δFm, of the eigenmode frequencies from their original val-
ues. We disregard any deviation of the coupling coeffi-
cients. By adopting the standard first order perturbation
technique we get the deviations of the eigenfrequencies:

δ(F−2
m ) = ET

mδ(f−2)Em (7)

where the eigenvector set is taken normal. Equation (7)
can be considered as a system of N+1 equations with N+1
unknowns δfi. However, since the eigenvector components
satisfy the following equation

E2
mi = E2

mi′ if i + i′ = N + 2, (8)

the eq. (7) cannot be inverted as a function of δfi. Nev-
erthless, as it can be written in the following way:

δ(F−2
m ) = ε2m

∑
ε2i

[
δ(f−2

i ) + δ(f−2
i′ )

]
E2

im; (9)

from the above equation we may infer that by making zero
the sum of the detuning in the symmetric cavities we may
tune all the eigenfrequencies. The key statement of this
paper is the following: this tuning gives an acceptable op-
timization of the field level in the cavities.

THE TUNING PROCEDURES
After some algebra, since fi = fi′ , the eq. system (9)

can be rewritten in the following way:

δFm

F 3
m

+
δFm′

F 3
m′

= ε
2
m

4

N

N/2+1∑
i=1

ε
2
i

δfi + δfi′

f3
i

cos
2 (i− 1)(m− 1)π

N
,

(10)

with m+m′ = N+2 and i+i′ = N+2. The r.h.s. term can
be regarded as a measurable quantity, while the deviations
of the single cavity frequencies are the unknown. In the
system of the eq. (10) the number of the equations is equal
to the unknowns and the determinant is never singular. Not
only, but it can be even analytically inverted.

The proposed tuning procedure, named System Mode
Sounding (SMS)[7], consists in:

1) the detection of the mode frequencies by sounding the
system in a suitably large frequency band f0(1± k1);
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2) the calculation of the correction by means the inver-
sion of eq.(10);

3) the introduction (extraction) of tuners producing the
desired tuning refinement;

4) the iteration of the procedure, if the case.
Because of eq.(10) the iteration stops when the sum of

the frequency deviations of symmetrical resonators is zero.
The tuning converges very fast: in general two iterations
are sufficient. The detection of the mode frequencies is
made by feeding a variable frequency signal in the first cell
and by picking up the response in the last one.

In a similar way to what was done in [7], we optimized
by tuning the field distribution in the cavities of an SCL. We
made a ”virtual measurement”. We solve the most general
circuit equation where each cell is slightly detuned by a
random error generated with a uniform distribution in the
interval (−δf, δf ). The solution gives the eigenfrequency
deviations δFm. These values are considered as ”measured
quantities”. They are introduced in eq.(10) which gives by
inversion the symmetric cell detuning (δfi + δfi′). One
half of this output is the correction to the initial detuning
of the relevant cavities (i and i′ indices). If the case, the
procedure restarts. At the end of the tuning procedure we
”measure”, by means of the same circuit solver, the field
distribution in the cavities at the π

2 mode. This distribution
is compared to the nominal one and to the one affected by
the starting random detuning.

As an example, the correction procedure has been ap-
plied to two linacs of 9 and 13 cavities. We allow for sec-
ond order couplings. The relevant parameters of interest
are: Q = 10000, f0 = 3GHz, k1 = 3.6%, ka = 0.7%
and kc = −0.4%. The adopted procedure foresaw two tun-
ings and a statistical evaluation on 40 samples affected by
random errors. The results are given in Fig.2 and 3.

CONCLUSION

In order to give a quantitative evaluation of the results of
the SMS tuning, we define three quality indices:

1) Field Amplitude Spread (FAS) which is the mean
square deviation of the field in the AC’s referred to the field
mean values;

2) Power Efficiency (PE) which is the ratio between the
total amount of the power dissipated in the AC’s and the
total amount delivered by the feeder;

3) Field Amplitude Distance (FAD) which is the mean
square value of the distance from the nominal value in per-
centage.

One can see in Fig.2 and 3 that, in both cases, we get
very good values of the quality indices after tuning. FAS
and PE, even if the starting situation seems acceptable, in-
dicate a remarkable improvement. More impressive is the
improvement of the field level in the AC’s: starting from a
FAD almost 90% we may reach less than 2%. Remark that
FAD=0 is the optimum.

The SMS tuning with 6 iteration was applied with the
same structures: the differences are irrelevant.

Figure 2: Field equalization for π/2 mode
(δf = ± 4MHz) of 9 cavities.

Figure 3: Field equalization for π/2 mode
(δf = ± 4MHz) of 13 cavities.
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