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Abstract 
The low-level radiofrequency control [1] for the Rapid 

Cycling Synchrotron of J-PARC [2], [3] is based on 
digital signal processing. This system controls the accel-
eration voltages of 12 magnetic alloy loaded cavities. To 
achieve a short overall delay, mandatory for stable loop 
operation, the data processing is based on distributed 
arithmetic in FPGA. Due to the broadband characteristic 
of the acceleration cavities, no tuning loop is needed., The 
RF system operates simultaneously with dual harmonics 
(h=2) and (h=4) [4] to handle the large beam current. The 
stability of the amplitude loops is limited by the delay of 
low pass FIR filters used after digital down conversion. 
The phase loop offers several operation modes to define 
the phase relation of (h=2) and (h=4) between the longi-
tudinal beam signal and the vector-sum of the cavity 
voltages. Besides the FIR filters, we provide cascaded 
CIC filters with smoothly varying coefficients [5]. Such a 
filter tracks the revolution frequency and has a substan-
tially shorter delay, increasing the stable operating region 
of the phase loops. The adaptive radial loop samples the 
orbit variation. Combined with a feed-forward of the 
dipole current the effects of measurement errors on the 
effective acceleration frequency program are reduced. 

THE CAVITY VOLTAGE LOOP 
The digital cavity voltage loops exist individually for 

each of the (11+1) cavities at (h=2) and (h=4). The im-
pedance of each cavity, where 3 acceleration gaps are in 
parallel, changes while the RCS revolution frequency 
sweeps from 469kHz to 836kHz. Therefore each voltage 
follows a pattern during acceleration. Figure 1 shows, for 
one cavity, how the gap voltage is sampled with 36MHz 
and then digitally down-converted at (h=2) and (h=4). 
The detected voltage is compared to a pattern. The 
difference is fed to a PID (Proportional, Integral, Dif-
ferential) compensation function, shown in fig. 2. The 
PID output controls the amplitude for digital up-conver-
sion. We provide 2 operating modes: pattern and PID 
output can be are added or multiplied. Limiter functions 
prevents overflow when the feedback signal is missing. 
Finally the (h=2) and (h=4) signals are combined and fed 
to the transistor amplifier which drives the push-pull tube 
amplifier that delivers the RF power to the cavity and the 
acceleration gaps. For stability of the loop, the 14µs delay 
of the symmetric FIR low-pass with 63 filter-taps, down-
sampled at 9MHz is dominant. For a linear ramp, the FIR 
output follows the input with a delay of approximately 
7µs. All arithmetic functions are realized with FPGA on 
9U VME (fig. 3) for high throughput data rate. Before 

implementing, the functions are simulated with SCILAB 
and Spice. 
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Figure 1: Cavity voltage loop – attenuator simulates 

cavity. 
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Figure 2: PID-amplitude controller. 

 
Figure 3: RFG (radio frequency generation) board. 
 

Amplitude Loop Test 
Figure 4 shows the error signal of the amplitude 

controller for PID settings Xp=1, Xi=0.2, Xd=0. After the 
“reset” from 25Hz trigger, which appears before each 
RCS-cycle, the integrator for the integral part starts from 
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Zero. This is equivalent to the response to a step in the 
amplitude pattern. For this test, the RF-output of the 
RFG-board was connected with an attenuator to the cavity 
measurement input. The signal frequency was 1MHz at 
(h=2). Figure 5 shows the stability limit. When the ex-
ternal attenuator between “RF-out” and “cavity-in” is 
changed from –6 to –5 dB, the loop becomes unstable, 
and oscillates at approximately 18kHz. This frequency is 
related to the delay in the FIR filter. The total loop gain is 
a product of all transfer functions in the amplitude loop. 
The stability of the loop with the cavity is checked for the 
highest gain on the analogue path from amplifier input to 
cavity output.  

 
Figure 4: The closed loop is stable for Xp=1, Xi=0.2, 
Xd=0. The error signal returns to zero without ringing. 

 
Figure 5: The amplitude loop is near un-stability for 
Xi=0.5 and –6dB outer attenuation. 

With Xp=Xd=0 and Xi=0.1 the stabilizing effect of the 
amplitude control loop in the mode “pattern added to 
PID-output” was verified. 

The RF-out pattern was set to constant 8191=125mV 
amplitude. If there were no losses in the analogue part of 
the cavity-input, the 2Vpp would be equal to a full-scale 
digital measured amplitude R2=32767. For calibration, a 
signal with 2.3Vpp was applied, that results in a digital 
amplitude at (h=2) slightly below R2=32767. The 
expected digital value R2=8191 is equal to an analogue 
input signal of approximately 580mVpp. Figure 6 shows, 
that for attenuator settings between –1 and –4 dB, the 
cavity input voltage is held constant by the amplitude 
loop, which adjusts the signal at RF-out. The signal at RF-
out is limited to 990mVpp. Therefore if the attenuator 
setting is -5 or -6dB, the output is saturated and cannot 
generate the voltage that would be required to keep the 
level at “Cavity-in”. It was confirmed, with a smaller 

pattern value, or with more gain, when the amplitude 
controller is connected to the combination of tube ampli-
fier and cavity, the control margin increases accordingly. 
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Figure 6: Testing the amplitude loop with constant pattern 
– the cavity measurement input voltage is kept constant. 

THE PHASE LOOP 
The beam phase loop controls the phase between the 

phase and gain compensated vector-sum of the (11+1) 
cavity voltages (fig. 7) and longitudinal beam signal 
monitored with FCTs (fast current transformers). The 
acceleration phase at (h=2) and the phase for the bunch 
shape manipulation (h=4) follow patterns. The digital 
receiver for the longitudinal beam signal is shown in 
figure 8. With a phase compensation pattern, ambiguity of 
the phase average of the two FCTs is avoided. Several 
modes for dual-harmonic operation are foreseen (figure 
9), for example: 
• (h=2) and (h=4) are independent 
• (h=2) is master, and (h=4) follows (h=2). 
All 4 phase measurement signals, e.g. beam and cavity 

for (h=2) and (h=4) can be inverted. In case, DC coupling 
of the phase loop results in an over-determined system, a 
DC-cut high pass with variable cut-off is foreseen. 
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Figure 7: The vector sum of up to 12 cavity voltages. 

The phase loop damps synchrotron oscillation by pro-
viding a damping term with 90º-phase shift. During the 
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20ms acceleration time will be approximately 55 synchro-
tron turns - the last turn at 18ms. All oscillations have to 
be damped before, so that a stable beam can be trans-
ferred either to the MR (Main-Ring) or to the MLF 
(neutron target). The FIR low pass filter mentioned before 
allows damping of synchrotron oscillations up to 18 kHz. 
We have developed a different type of digital low pass 
filter [5] that reduces the delay by 50% and increases the 
stability margin. The filter structure, shown in fig. 10, is 
based on linear approximation between 2 CIC filters with 
variable coefficients tracking the RCS revolution fre-
quency. Such filters are known for a variable clock oper-
ating on a multiple of the revolution frequency [6]. Here, 
we use linear interpolation between one notch-filter above 
and a second notch-filter below the accelerator revolution 
frequency. Simulation shows, that the loop is stable for 
synchrotron frequencies up to 30kHz and may provide 
damping within 100µs. 
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Figure 8: Processing longitudinal beam phase signal. 
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Figure 9: Selection of dual harmonic operation mode. 
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Figure 10: Digital low pass based on a CIC structure. 

ORBIT CONTROL 
The dipole magnet current is averaged (linear or exponen-
tially) up to 8000 cycles for feed forward to compute a 

frequency offset ∆fB for the main synthesizer (SPG-
board). The feed-forward is adjusted by a gain pattern and 
a hysteresis correction pattern. The radial loop controller 
shown in figure 11 averages the position signals from 3 
BPMs and computes the frequency offset ∆fR. For each 
BPM input a fixed DC value for offset compensation can 
be set. The weighting function for each BPM allows 
selecting, which BPM is used (Zero weight = unused). 
The measured orbit variation during a cycle and the re-
sulting frequency pattern that was used by the synthesizer 

frev = fprog + ∆fB - ∆fR   (1) 
are stored in onboard-memory. They are analyzed for 
adaptive modification of the frequency pattern and setting 
of loop gain pattern and PI coefficients for the radial loop. 
The gain pattern includes compensation of dispersion 
effects. Setting entries in the gain pattern to Zero switches 
the radial loop off, which is helpful for optimisation.  
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Figure 11: averaging orbit of 3 BPMs for frequency offset. 
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