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Abstract 
Instabilities in the gun region of a high-power klystron 

can occur when there is positive feedback between a 
mode and an induced current on the quasi-steady state 
beam emitted by the gun cathode[1]. This instability is 
dependent on the gun voltage, and is predicted on the 
basis of a negative total Q. The established method for 
computing the beam-loaded Q of a cavity involves using a 
time-dependent electromagnetic particle-in-cell (PIC) 
code to track beam particles through the quasi-static gun 
fields perturbed by the electromagnetic fields of a cavity 
eigenmode[2]. The energy imparted to the beam by the 
mode is obtained by integrating the Lorentz force along 
the particle tracks, and this quantity is simply related to 
the beam-loaded Q. We have developed an alternative 
approach that yields comparable accuracy but is 
computationally much simpler. The new method is based 
on a time-independent electrostatic PIC calculation, 
resulting in much faster solutions without loss of 
accuracy. We will present the theory and implementation 
of the new method, as well as benchmarks and results 
from analysis of the XP-4 klystron that show a potential 
instability near 3 GHz. 

INTRODUCTION 
In designing high power klystrons the primary focus is 

on power generation and both analytical methods and 
numerical codes exist for optimizing the tube’s efficiency 
and performance. But often, spurious oscillations at 
frequencies other than the operating frequency have 
hampered the progress towards higher power output. 
These are parasitic modes which, when driven by the 
beam and not sufficiently loaded down, grow to disrupt 
the tube’s operation. They have been found in the gun 
region and in the RF circuit but at present there are no 
reliable tools for predicting which of the many modes is a 
candidate for causing this type of failure. 

Spurious oscillations in the klystron gun and in the 
circuit are known to grow from noise on the beam, and 
should therefore be amenable to a small-signal analysis 
based on the reaction of the particles to a small RF 
perturbation of the static fields, the perturbation coming 
from a particular resonant mode of the structure.  In the 
small signal limit the energy coupled to the beam by a 
mode can be used to compute the beam-loaded Q for the 
mode.  With additional knowledge of the external Q for 
the mode it is possible to compute the total Q, and a 
negative total Q indicates instability. 

In this paper we describe one approach to computing 
the total Q of modes in the gun and cavities in the circuit.  
We show comparisons with published analytic and 
computed results, and also apply the approach to the 

analysis of the XP-4 klystron under development at 
SLAC. 

COMPUTATION OF PARTICLE EXIT 
ENERGY 

The approach is based on computing the difference in 
energy of particles that are tracked alternately through 
static fields in the structure and then again with the 
addition of a small RF perturbation based on an 
eigenmode that is computed separately.  Particle tracks 
are determined using an electrostatic PIC code that 
includes the effects of self-magnetic fields and space 
charge.  The space charge field and self magnetic field are 
exported, along with the tracks for representative test 
particles, for use in the integration process described 
below. 

To determine the exit energy of a particle that traverses 
a specified path through prescribed static fields perturbed 
by an RF mode field, its velocity and position along the 
path are computed by solving the following equation of 
motion: 
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Integrating this expression over a short segment of the 
particle track (short enough that we can neglect the 
variation of the electric field both in time and space as the 
particle traverses the segment) yields the velocity at the 
end of the segment as a function of velocity at the 
beginning of the segment and the integral of the axial 
electric field along the segment: 
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where V∆  is given by: 
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The electric field can be expanded in a Taylor series about 
z0 to evaluate this integral, and to first order in z∆  we get: 
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where )(zf  is the particle trajectory. After pushing the 
particle along the segment, we update the time using the 
average velocity along the segment. 

The particle exit velocities are used to compute total 
beam energy with and without RF fields, so it is important 
the velocities computed by the method are accurate.  It is 
only the difference between particle velocities/energies in 
static fields and those perturbed by RF fields that are used 
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in the beam-loaded Q computation, but an inaccurate 
computation of exit quantities in static fields would 
indicate fundamental problems with the integration of the 
force equation. 

The computed final particle velocities were compared 
with the Poisson 2 [3] values for a gun voltage of 100 KV, 
and the maximum difference was less than 0.4% for all 
particles, with the largest errors occurring on the particle 
tracks with the largest curvature near the beam edge.  
These comparisons tended to improve with increasing gun 
voltage.  The total beam power at the exit plane was also 
compared, and this showed very good agreement between 
the perturbation method and the Poisson 2 code, with a 
maximum error of 0.2%. 

COMPARISON TO BRANCH RESULT 
Consider a simple circular pillbox of radius a and axial 

length d, with a zero-radius beam on axis.  For the case of 
purely axial mode fields and sub-relativistic particles, 
Branch [4] derived the following expression for power 
flow from the mode to the beam: 
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where mE  is the maximum instantaneous electric field 
strength of the mode anywhere in the gap along the 
particle trajectory, )(zg  is the normalized field profile in 
the gap, 0I  is the beam current, and 
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000 11 cm
e

V −= γ  (6) 

with 0u  and 0γ  corresponding to the particle entrance 
velocity.   When the mode pattern is axially invariant, the 
power expression evaluates to: 
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Note that the power transfer is negative for certain values 
transit angle, meaning that the mode is extracting energy 
from the beam. 

The beam-loaded Q for the mode is given by 
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Rewriting Eqn. 7 in terms of the transit angle deβφ = , 
and substituting into Eqn. 8 yields the following result for 
the fundamental mode: 
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A comparison between analytic and computed results for 
the fundamental mode in a pillbox of dimension a = 10 
cm and d = 7.5 cm is shown in Fig. 2. 

KLYSTRON BUNCHING CAVITY 
This benchmark problem establishes the utility of the 

perturbation method for analyzing the 2D sections of the 
circuit, and it involves the computation of beam-loaded Q 
value for a klystron bunching cavity that was analyzed by 
Becker, et al [2].  It is assumed that the beam is confined 
to the axis, and it has an input energy of 116KV and 88A 
current.  The geometry of the cavity is shown in Fig. 3.  
The fundamental mode in this cavity oscillates at 
2747MHz, and Becker’s paper lists two results for the 
beam-loaded Q of this mode based on two different 
methods of calculation: 87.2 and 88.7.  The perturbation 
method described herein yields 89.8. 
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Figure 2: Comparison of computed vs. analytic Qb values 
vs. beam voltage for simple cavity (d = 7.5 cm). 
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Figure 3: Klystron bunching cavity geometry. 

ANALYSIS OF XP-4 GUN REGION 
The geometry of the XP-4 gun is shown in Fig 4, 

consisting of a vacuum region separated from an oil 
tank/RF feed by a ceramic window[5]. 

___________________________________________  
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Figure 4: R-Z cross-section of XP-4 klystron gun region.  
Note that there is no physical divider between the two 
colors in the vacuum region. 

For five different values of the ceramic window 
dielectric constant (8, 9, 10, 11, and 12) all monopole 
eigenmodes were extracted for this structure between 
100MHz and 5GHz using the OM2P eigensolver.  The 
total “cold” Q of each mode was also computed by the 
eigensolver.  The modes were extracted in groups of 30, 
and approximately 215 modes were found for each value 
of ceramic dielectric constant.  The reason we swept over 
dielectric constant is that although the nominal value is 
10, this value is notoriously variable for ceramic and has 
been seen to vary by up to 50% in earlier studies. 

We used the Poisson 2 code to generate the necessary 
gun solution for gun voltages between 10KV and 550KV 
in 10KV increments.  After the modes and gun solutions 
were obtained, the perturbation method described herein 
was used to generate the stability ratio (Qm/Qb) and 
power balance for all modes at all gun voltages.  The 
results of this computation are shown in Figs. 5-7. 

Minimum Stability Ratio (for gun voltage 10-550KV)

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0 1000 2000 3000 4000 5000

Mode Fr (MHz)

m
in

(Q
m

/Q
b)

D.C.=10
D.C.=11
D.C.=12
D.C.=8
D.C.=9

Fr ~ 2860 MHzFr ~ 2860 MHz

Unstable at D.C. = 11Unstable at D.C. = 11

 
Figure 5: Minimum values of stability ratio (< -1 indicate 
instability) for all monopole modes resonating at < 5 GHz 
in klystron gun region (~215 modes) for a ceramic 
window dielectric constant varying from 8 - 12.  Reported 
minimum for each mode is over range of gun voltages 
10KV - 550KV. 

Of the modes resonant below 5 GHz, only one at 2860 
MHz shows potential instability as seen in Fig. 5.  This 
mode is predicted to be stable at the nominal ceramic 
window dielectric constant of 10, but is unstable if the 
dielectric constant is 11. 

The stability ratio for the unstable mode is plotted as a 
function of gun voltage in Fig. 6, showing that the onset 
of instability occurs for a gun voltage of 440 KV.  This 

mode can therefore be induced during the ramp-up in 
beam voltage, potentially disrupting tube start.  The field 
pattern for the unstable mode is shown in Fig. 7. 
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Figure 6:  Stability ratio values for 2860MHz mode in gun 
region for A-K voltages in the range 10KV-550KV for 
window dielectric constant of 12.  Mode is unstable if this 
ratio is < –1, so this mode will grow for gun voltages > 
440KV. 

 
Figure 7: |E| of potentially unstable mode.  

CONCLUSIONS 
A method for computing beam-loaded Q values based 

on an electrostatic PIC calculation is presented.  This 
procedure was validated against established results, and 
then used to analyze the gun region of the SLAC XP-4 
high-power klystron.  The method predicts an unstable 
mode at 2860 MHz for certain values of the dielectric 
constant of the ceramic RF window in this structure. 

REFERENCES 
[1] B. Krietenstein, et al., "Spurious oscillations in high-

power klystrons," PAC’95, 1995. 
[2] U. Becker, et al., “Simulation of oscillations in high-

power klystrons,” Proceedings of EPAC’96, 1996, p. 
1274-1276. 

[3] V. Ivanov, “The mathematical methods and 
electromagnetic codes for the physical electronic 
devices,” Proc. 2nd Int. Conf. on Computations in 
Electromagnetism, Nottingham, May 13-15, 1994. 

[4] G. M. Branch, “Electron beam coupling in interaction 
gaps of cylindrical symmetry,” 1961, IRE 
Transactions on Electron Devices, May 1961. 

[5] D. Sprehn, personal communication. 

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

0-7803-8859-3/05/$20.00 c©2005 IEEE 4062


