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Abstract

We analyze the dynamics of inhomogeneous, magnet-
ically focused high-intensity beams of charged particles.
While for homogeneous beams the whole system oscillates
with a single frequency, any inhomogeneity leads to prop-
agating transverse density waves which eventually result
in a singular density build up, causing wave breaking and
jet formation. The theory presented in this paper allows to
analytically calculate the time at which the wave breaking
takes place. It also gives a good estimate of the time nec-
essary for the beam to relax into the final stationary state
consisting of a cold core surrounded by a halo of highly
energetic particles.

INTRODUCTION

It is well known that magnetically focused beams of
charged particles can relax from non-stationary into sta-
tionary flows with the associated particle evaporation [1].
Gluckstern [2] showed that initial oscillations of mis-
matched beams induce formation of large scale resonant
islands [3, 4] beyond the beam border: beam particles
are captured by the resonant islands resulting in emittance
growth and relaxation. A closely related question concerns
the mechanism of beam relaxation and the associated emit-
tance growth when the beam is not homogeneous. On gen-
eral grounds of energy conservation one again concludes
that beam relaxation takes place as the coherent fluctua-
tions of beam inhomogeneities are converted into micro-
scopic kinetic energy [1, 5]. However, unlike in the former
case for which the specific resonant mechanism is well un-
derstood, for inhomogeneous systems a more detailed de-
scription of the processes involved must still be explored.
This is the goal of the present paper.

We find that the relaxation comes about as a consequence
of breaking of density waves followed by ejection of fast
particle jets. Jets are formed by particles moving in-phase
with the macroscopic density fluctuations. They draw their
energy from the propagating wave fronts and convert it into
microscopic kinetic energy. For strongly inhomogeneous
beams, we find that it is the wave breaking and jet produc-
tion which are the primary mechanisms responsible for the
beam relaxation.
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THE MODEL AND ANALYSIS

We consider solenoidal focusing of space-charge domi-
nated beams propagating along the transport axis, defined
as the z axis, of our reference frame. The beam is initially
cold with vanishing emittance and is azimuthally symmet-
ric around the z axis. Prior to the appearance of density
singularities one uses a cold fluid description for which La-
grangian coordinates are appropriate. In these coordinates,
the transverse radial position r of a beam element is gov-
erned by [6, 7, 8]

r′′ = −κ r +
Q(r0)

r
; (1)

the prime indicates derivative with respect to the longitudi-
nal z coordinate which for convenience we shall also refer
to as “time”. The focusing factor is κ ≡ (qB/2γmβc2)2,
where B is the axial, constant, focusing magnetic field;
Q(r0) = KN(r0)/Nt, is the measure of the charge con-
tained between the origin at r = 0 and the initial position
r(z = 0) = r0, Nt is the total number of beam particles
per unit axial length, N(r0) is the number of particles up
to r0, and K = Ntq

2/γ3mβ2c2 is the beam perveance. q
and m denote the beam particle charge and mass, respec-
tively; γ = (1 − β2)−1/2 is the relativistic factor where
β = vz/c and vz is the constant axial beam velocity and c
is the speed of light. Note that r0 is in fact the Lagrange co-
ordinate of the fluid element [9] which means that as long
as the fluid description remains valid, the amount of charge
seen by the fluid element inside the region 0 < r ≤ r(z)
remains unaltered at Q(r0), independent of time z. This is
of fundamental importance since from the Gauss law this
is the charge that exerts the force on the fluid element. We
will consider beams starting from a static initial condition,
r′(0) = 0. The formal solution to the fluid dynamics Eq.
(1) is r = r(z, r0). This can be calculated explicitly us-
ing the Lindstedt-Poincaré perturbation theory. As long as
the fluid picture applies, for small amplitude fluctuations
around the stable equilibrium req(r0) =

√
Q(r0)/κ we

obtain

r(r0, z) = req

{
1 + A/req cos(ωz)

+ (1/3)(A/req)2 × [2 + cos(ωz)] sin2(ωz/2)
+ O[(A/req)3]

}
, (2)

where A(r0) = r0 − req is the amplitude of oscilla-
tions, ω(r0) = ω0 +

√
κ A2/(6

√
2 r2

eq) is the renormal-

ized r0-dependent frequency, and ω0 =
√

2κ is the un-
perturbed frequency. The time evolution of the beam
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density can be obtained as follows. For a beam of ini-
tial cross sectional density n0(r), the amount of charge
δQ between two concentric circles of radii r0 and r0 +
δr0 (δr0 small) is δQ = 2πr0δr0(K/Nt)n0(r0). Since
this charge is conserved, δQ = 2πrδr (K/Nt)n (r) =
2πr(∂r/∂r0)(K/Nt)n(r)δr0, and the transverse beam
density at any future time z is therefore,

n(r) = n0(r0) (r0/r) (∂r/∂r0)
−1 ∣

∣
r0=r0(r,z)

. (3)

For a given position r and an axial coordinate z, the ini-
tial position r0 of a beam element can be uniquely deter-
mined as the inverse function r0 = r0(r, z) of Eq. (2).
This ceases to be the case if ∂r/∂r0 → 0 and r0(r, z) be-
comes multivalued. If this happens, the density will diverge
and the fluid picture will break down. All these features,
if present, would be indicative of a wave breaking phe-
nomenon. Breaking might be responsible for conversion
of energy from macroscopic fluid modes into microscopic
kinetic activity.

SIMULATIONS

Given an initial beam profile it is possible to evaluate the
density n using Eq. (3). We write the initial cross sectional
beam density at z = 0 in a general parabolic form n0(r0) =
ρh+χρi(r0), where the inhomogeneity parameter 0 ≤ χ ≤
1, ρh ≡ Nt/(πr2

b ), ρi(r0) ≡ ρh(2r2
0/r2

b − 1), and rb is the
beam radius. To diminish the effects arising from the pure
envelope oscillations — Gluckstern resonances — we fix
rb =

√
K/κ, thus fixing the beam radius while the fluid

description remains valid.
The compressibility factor exhibits a fast oscillatory mo-

tion accompanied by a slow secular growth, the latter aris-
ing as a result of spatial derivatives applied on the phase
factors of Eq. (2). This means that given enough time, the
compressibility will always cross its zero axis for any finite
value of χ, resulting in a density divergence.

To further explore the significance of the diverging den-
sity, we have performed fully self-consistent N-particle
simulations in the continuum limit; in practical terms we
use Nt = 10000 in the simulations along with Gauss law.
Taking advantage of the azimuthal beam symmetry and the
Gauss law, a particle located at a position r experiences a
field generated by the particles within a circle of radius r
[6, 10]. Within the simulation, the trajectory of each par-
ticle is, therefore, also governed by Eq. (1) — unlike the
fluid elements, however, particles are allowed to bypass one
another.

In Fig. 1 we display the particle phase-space (r, v ≡ r ′)
for χ = 0.6. The first panel (a) shows the initial distri-
bution at z = 0 — all particles are still. In panel (b), af-
ter various propagating wave cycles, the system is about to
build up an infinite density; velocity is still a single valued
function of the space coordinate but a singularity (cusp) is
forming. The third panel (c) shows the system at a time
slightly larger than the first wave breaking time. Velocity

ceases to be a single valued function of the space coordi-
nate — while some of the particles go through the wave
others do not. This latter class of particles is accelerated
by the wave front and forms a thin azimuthally symmet-
ric jet or finger seen in the figure. High energy jet parti-
cles can reach far outside the beam core and may be very
detrimental to the beam transport. The process shown in
panel (c) repeats itself many times, see panel (d), as the
system evolves toward a final stationary state and the pre-
viously unoccupied extensions of the phase-space are grad-
ually filled with particles whose velocities are considerably
larger than velocities in the beam core. After some time a
stationary state is reached in which the beam separates into
a cold dense core and a hot and extended halo of ejected
particles, panel (e). Time evolution of the emittance [7]
ε ≡ 2

√
< r2 >< v2 > − < r v >2, where <> denotes

an average over particles, is shown in the last panel (f). At
the wave breaking emittance suffers a sharp rise, followed
by a rapid relaxation to the final stationary state in which
large amplitude fluctuations subside. As mentioned, the

Figure 1: Time evolution in the phase-space (r, v) for χ =
0.6. r is measured in units of (K/κ)1/2, v in units of K1/2,
and z in units of κ−1/2: panel (a) – initial condition at z =
0; panel (b) – after many wave cycles, but just before wave
breaking; panel (c) – just after wave breaking, an azimuthal
jet is expanding over the phase-space; panel (d) – while the
first jet moves in the phase space new jets are being ejected;
panel (e) – a phase portrait of a relaxed state; panel (f) –
emittance growth leading to a final relaxation. Note that
emittance saturates soon after the wave breaking (wb).

dominant mechanism for emittance growth is the singular
build up of density followed by the wave breaking and jet
production. In passing we note that the time of the first
wave breaking depicted in the panel (c) of Fig. 1 agrees
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well with the time when the compressibility factor ∂r/∂r0

obtained from the Lagrange fluid equations goes to zero.
Our next goal is then to precisely calculate the instant at
which the wave breaking takes place.

We first note that for an inhomogeneous density profile,
each fluid element oscillates at a different frequency —
rigid oscillations are possible only when the density pro-
file across the beam cross section is homogeneous. Thus,
nearby fluid elements will oscillate around their points of
equilibria, slowly moving out-of-phase. At some point,
however, two nearby fluid elements will overlap one an-
other leading to a singular build up of density. When this
happens the fluid picture will lose its validity and will have
to be replaced by the full kinetic description given in terms
of the Vlasov equation. The wave breaking occurs when
the separation between any two fluid elements vanishes,
r(r0 + δr0, z)− r(r0, z) → 0, for some value of r0. This is
precisely equivalent to our condition for the appearance of
a singular density, ∂r/∂r0 → 0. Considering only the term
linear in amplitude of Eq. (2) and neglecting the purely os-
cillatory term, as compared to the secular one, the time of
breaking is found to be

zwb ≈ min
r0

∣
∣
∣∣

1
2
√

Q

∂Q/∂r0

A∂ω/∂r0

∣
∣
∣∣ ; (4)

breaking occurs whenever ∂ω/∂r0 �= 0. This is the case for
all inhomogeneous particle beams. Unlike other systems
in which one must have strong enough electric fields [11],
here any sort of inhomogeneity leads to the wave breaking.
As soon as the wave breaking takes place, particles with the
same velocity as the density wave will be captured by the
wave and surf down its front gaining kinetic energy (Fig.
1). Minimization in Eq. (4) can be performed

zwb =
(

3
2κ

)1/2 α3
(
4
√

1 − χ + χ − 1
)

(√
3 − α

)2 (√
1 − χ + χ − 1

) , (5)

where α ≡ (1 + 2
√

1 − χ − χ)1/2.

In the limit χ → 0, the wave breaking time diverges as
zwb ≈ 81

√
2/χ3. The subsequent breaks, however, occur

on a much shorter time scale ∼ 1/ω0 - we note that due
to periodicity, after the first break every cycle brings the
compression factor to a vanishing value again. Therefore,
zwb should also give us a good estimate of the relaxation
time for the entire dynamics. In Fig. 2 we compare the
wave breaking time obtained using the N particle dynamics
simulation described above with zwb given by Eq. (5). The
figure reveals an amazingly good agreement between the
two results. In the same plot we also show the relaxation
time — defined as the time when the emittance first reaches
its plateau value, see Fig. 1 (f). As expected, for smaller
values of χ the time of relaxation follows closely the wave
breaking time. For larger values of χ a deviation between
the two data sets is observed.
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Figure 2: Comparison of the predicted time of the first
wave breaking Eq.(5) (solid line), with the result of dy-
namics simulations (circles). Time is measured in units of
κ−1/2. A very good agreement between the theory and the
simulations extends all the way to χ = 0.8.

FINAL REMARKS

The theory presented in this paper allows to calculate
precisely the time at which the wave breaking will take
place. It also gives a very good estimate for the time of re-
laxation to the final stationary state. Unlike other systems
in which the wave breaking occurs only when thresholds
on driving fields are exceeded [11], inhomogeneous beams
are found to be always unstable [12] and the wave breaking
is unavoidable.

REFERENCES

[1] A. Cuchetti, M. Reiser, and T. Wangler, in Proceedings of
the Invited Papers, 14th Particle Accelerator Conference,
San Francisco, USA, 1991, edited by L. Lizama and J. Chew
(IEEE, New York, 1991), Vol. 1, p. 251.

[2] R.L. Gluckstern, Phys. Rev. Lett. 73, 1247 (1994).

[3] R. Pakter, G. Corso, T.S. Caetano, D. Dillenburg, and F.B.
Rizzato, Phys. Plasmas, 12, 4099 (1994).

[4] R. Pakter, S.R. Lopes, and R.L. Viana, Physica D 110, 277
(1997).

[5] S.M. Lund, D.P. Grote, and R.C. Davidson, Nuc. Instr.
and Meth. A 544, 472 (2005); Y. Fink, C. Chen and W.P.
Marable, Phys. Rev. E 55, 7557 (1997).

[6] H. Okamoto and M. Ikegami, Phys. Rev. E 55, 4694 (1997).

[7] M. Reiser, Theory and Design of Charged Particle Beams,
(Wiley-Interscience, 1994); R.C. Davidson and H. Qin,
Physics of Intense Charged Particle Beams in High Energy
Accelerators (World Scientific, Singapore, 2001).

[8] R. Pakter and F.B. Rizzato, Phys. Rev. Lett. 87, (2001).

[9] P.J. Morrison, Rev. Mod. Phys. 70, 467 (1998).

[10] Y. Levin, Rep. Prog. Phys. 65, 1577 (2002).

[11] R.J. England, J.B. Rosenzweig, and N. Barov, Phys. Rev. E
66, 016501 (2002); T. Ohkubo, S.V. Bulanov, A.G. Zhid-
kov, T. Esirkepov, J. Koga, M. Uesaka, and T. Tajima, Phys.
Plasmas 13, 103101 (2006)

[12] I. Hofmann, L.J. Laslett, L. Smith, and I. Haber, Part. Ac-
cel., 13, 145 (1983).

FRPMN008 Proceedings of PAC07, Albuquerque, New Mexico, USA

05 Beam Dynamics and Electromagnetic Fields

3888

D02 Non-linear Dynamics - Resonances, Tracking, Higher Order

1-4244-0917-9/07/$25.00 c©2007 IEEE


