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Abstract

This paper examines the transition from isotropic to
anisotropic beam profiles in a uniform linear focusing
channel. Considering a high-intensity ion beam in space-
charge dominated regime and large beam size-rms mis-
matched initially, observe a fast anisotropy situation of the
beam characterized for a transition of the transversal sec-
tion round to elliptical with a coupling of transversal emit-
tance driven for collective instabilities of nonlinear space-
charge forces.

INTRODUCTION

In space-charge dominated beams the nonlinear space-
charge forces produce a filamentation pattern, which re-
sults in a 2-component beam consisting of a inner core and
an outer halo [1]. When this core is mismatched in a uni-
form linear focusing channel, its envelope oscillates and the
particles, represented by single test particle, oscillate about
and through the core, this mechanism is called particle-core
models.

Space-charge induced coupling between different de-
grees of freedom can be responsible for emittance growth
or transfer of emittance from one phase plane to an-
other [2]. In an analytical single-particle analyses Mon-
tague [2] pointed out that the space charge driven fourth
order difference resonance may lead to emittance cou-
pling. The coupling resonances driven by the beam space
charge fields depending only on the relative emittances
and average focusing strengths. In anisotropic beams, the
emittance and/or external focusing force strength are dif-
ferent in the two transverse directions. Ikegami [2] and
Hofmann [2] deal with effects of anisotropic of beam
cores on halo dynamics. Most of the halo studies so far
have considered round beams with axisymmetric focus-
ing. Some news aspects caused by anisotropy-with the ra-
tio of focusing strengths and/or emittances as additional
free parameters- demonstrating an influence of the mis-
match on halo size [2]. Simeoni et al. [3], recently, worked
a nonlinear analyses of the transport of beams consider-
ing nonaxisymmetric perturbations. It is shown that large-
amplitude breathing oscillating of an initially round beam
couple nonlinearly to quadrupole-like oscillations in this
case, the beam develops an elliptical shape.

This paper deals with the coupled motion between the
two tranverse coordinates of a particles beam arising from
the space-charge forces and, in particular, with the effects
of the coupling in beam which have ratio rx/ry ≈ 1, rx
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and ry are the envelope semi-axes-rms . A beam with non-
uniform charge distribution always gives rise to coupled
motion. However, it is only when the ratio rx/ry ≈ 1
and large beam size-rms mismatched on the order of 100%
[4] that the coupling can produce an observable effect in
the beam as a whole. This effect arises from a beating
in amplitude between the two coordinate directions for the
single-particle motion and from the coupling between os-
cillations modes beam, -resulting in grow and transfer of
emittance from one phase plane to another, in the beam de-
velops an elliptical shape and therefore; in the transition
from isotropic to anisotropic beam profiles.

ISOTROPIC TO ANISOTROPIC BEAM

We consider an axially long unbunched beam of ions
of charge q and mass m propagating with average ax-
ial velocity βbcêz along an uniform linear focusing chan-
nel, self-field interactions are elestrostatic. The beam is
assumed to have an elliptical cross section centered at
x = 0 = y and vanishing canonical angular momentum
Pθ ≡ 〈xy

′ − yx
′〉 = 0, where x and y are the positions of

the beam particles. We consider nonuiform density beam
in space-charge dominated regime and εx = εy = 1 emit-
tance, initially.

As demonstrated by Sacherer [4] and Lapostolle [4] en-
evelope equations for a continuous beam are not restricted
to uniformly charged beams, but are equally valid for any
charge distribution with elliptical symmetry, provided the
beam boundary and emittance are defined by rms (root-
mean-square) values. Thus, we consider the parabolic den-
sity beam (nb = 2Nb/πrxry

[
1 − x2/r2

x − y2/r2
x

]
) where

Nb is the axial line density, rx =
√

6〈x2〉 and ry =√
6〈y2〉 are ellipsis semi-axes rms. A main point is that

for parabolic density distribution the fourth order space-
charge potential driving the coupling is already present in
the initial distribution, hence emittance exchange and beam
develops an elliptical shape, immediately.

For a parabolic density n(x, y), Poisson’s equation
∇2

⊥φ = −qn/ε0, ε0 is the permittivity of free space, pro-
vides the basis for obtaining the space-charge field com-
ponent (assuming paraxial approximation). The density is
assumed to be zero outside the ellipse. The solution has
been given by Lapostolle [4]. The elestrostatic potential φ
is given by :

φin =
2qNb

πεo

[
x2

αx
+

y2

αy
− δxx4 − δyy4 − 1

αxαy
x2y2

]
(1)

inside the beam, where αx,y = rx,y(rx + ry),
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δx,y = (2rx,y + ry)/3r3
x,y(rx + ry)2, and

φout =
q

4πε0
log

[

y2 + x2 + Λ +
√

2yΔ+ +
√

2xΔ−
]

+
q

2πε0λ2

[

y2 − x2 − y√
2
Δ+ +

x√
2
Δ−

]

(2)

outside the beam, where λ = r2
x − r2

y , Λ =√
(x2 − y2 − λ2)2 + 4x2y2 and Δ± =√
Λ ± (x2 − y2 ∓ λ2).
The transverse orbit x(s) of a beam particle satisfy the

paraxial equation of motion

x
′′

+ κ2
0x =

−q

mγbβ2
b c2

∂φ

∂x
(3)

with an analogous equation for orbit y(s). Here, s is the
axial coordinate of a beam , primes denote derivates with
respect to s, and κ0 is represented constant focusing force.

The envelope of the beam is an elliptical cross-section
with rms radii rj (henceforth, j ranges over both x and y)
that obey the KV-rms envelope equations [4]

r
′′
j + κ2

0rj − 2K

rx + ry
− ε2j

r3
j

= 0 (4)

Here, K = q2Nb/π2ε0γ
3
b β2

b mc2 is the dimensionless per-
veance of the beam. εj is rms-emittance of the beam along
the j-plane.

The εj =
√
〈r2

j 〉〈r′2
j 〉 − 〈rjr

′
j〉2 can analytical been cal-

culated following a model proposed to Lapostolle et al. [4]
for nonlinear space-charge forces, and a sympletic mapping
to Simeoni et al. [3] for large mismatch beam. According
to Lapostolle et al. [4] nonlinear space-charge forces cause
a change in the momentum components, which is equal to
the product of the force and the time over which the force
acts. In general, these changes in the momentum compo-
nents change the phase-space distribution of the particles.
Thus the particles experience a space-charge impulse, but
do not propagate far enough for their positions to change
appreciably. For a beam with large mismatch amplitudes,
Simeoni et al. [3] has demonstrated that mismatch is like
an impulse so fast that particle’s positions not change, only
momentum suffers a discontinuous variation. From elet-
rostatic potential and mismatch amplitudes on the order
of 100%, the tranverse momentum impulse can be calcu-
lated. This results in a new phase-space distribution and
new rms emittance. For example, in the x plane; the change
in the momentum component is 
px = qExh/vb, where
Ex = ∂φin

x /∂x is electric field, h is the effective amplitude
of oscillations modes beams, and vb is the beam velocity.
Details of h can be found in paper’s Simeoni et al. [3]. The
impulse can also be expressed as change in the divergence
angle, given non-relativistically in the paraxial aproxima-
tion by 
x

′
= qExh/mbv

2
b . If the final second moments

of the particle distribution can be evaluted from the expres-
sion for x and x

′
, the final rms emittance can be obtained.

Knowing that divergence is x
′
= x/rx + qExh/mbv

2
b , the

rms emittance for parabolic density yields

εx =

[

K2h2 r2
x

r2
y

[
1

432
Θ2

Γ4
+

7
720

1
Γ4

− 1
360

Θ
Γ4

]] 1
2

(5)

where Θ =
(

2rx

ry
+ 1

)
and Γ =

(
1 + rx

ry

)
. The result is

easily transformed to the y plane interchanging rx and ry .

Numerical Results

It is easy to verify that there is a particular solution
of the envelope equations (4) for which r j(s) = rb0 =
[(

K + (K2 + 4κ2
0η

2)1/2
)
/2κ2

0

]1/2
, where η = εx/εy is

ratio emittance. This corresponds to the so called matched
solution for which a circular beam of radius rb0 preserves
its shape throughout the transport along the focusing chan-
nel. Then, we transform the equations to a dimension-
less form introducing the following dimensionless vari-
ables an parameters: τ = κ0s for the independent vari-
able, r̃x =

√
κ0/εyrx and r̃y =

√
κ0/εyry for envelope

beam, x̃ =
√

κ0/εyx and ỹ =
√

κ0/εyy for test-particle,
and K̃ = K/εyκ0 for the scaled space-charge perveance.
In addition, we introduce the following anisotropy param-
eters: the ratio emittance η, ratio of the envelope beam
χ = rx/ry and the mismatch factor ν = rx/rb0 = ry/rb0.

We launch the beam with k̃ = 3, κ0 = 1, ν = 2.4,
rj = νrb0 and η = 1 initially, and integrate firstly the
envelope equations up to s = 50.0. In Fig. (1) the beam
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Figure 1: Evolution of the envelopes equations for rx and
ry , represented by red and green lines, respectively

develops an elliptical shape with a increase in its size along
of x-direction. This effect is caused for large beam size-
rms mismatched its that coupled the oscillations modes
beam, perturbing nonlinear space-charge force. There-
fore perturbation induction coupling between different de-
grees of freedom with transference of emittance from one
phase plane to another [2]. In Fig. (2) the initial transver-
sal emittance is equal εx0 = εy0 = 0.28. It is observed
emittance coupling caused for space charge driven Mon-
tague resonance [2]. Single particle resonances eventually
yield rms emittance growth as more and more particles to
be launched out of core. Assuming which beam is usu-
ally equipartitioned in x and y -(ξ = (ryεx)2/(rxεy)2),
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Figure 2: Emittance evolution for εx and εy, which are rep-
resented by red and green lines, respectively.

where ξ is the ratio of oscillations energies in the x and
y directions,- but has different χ and large beam size-rms
mismatched, the core resonances enable energy transfer
from one plane to another [2]. We note that the exchange
is accompanied by halo creation along one direction pref-
erential, as illustrated in the Fig. (3). In the particle-core
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Figure 3: Test particle evolution for x = 0.5rx and y =
0.5ry , initially, whose orbits x and y are represented by
blue and pink lines, respectively.

model, the core is described by rms envelope equation (4),
and the halo particles are modeled using test particles that
subject to the external force and the time-dependent non-
linear space-charge force associated with the core. The
test particles do not affect the motion of the core and are
described by equation (3) taking φ in for inside beam, and
φout for outside beam.

For large beam size-rms mismatched and ratio envelopes
beam small χ � 1, the ratio of oscillations energies in
the x and y directions remaines constant, ξ = 1. As il-
lustrated in the Fig. (4) beam fast suffers anisotropization
characterized for discontinuous variations in χ and η. The
anisotropy leading to core-core resonance [2] in the pres-
ence of nonlinear space-charge forces was suggested as a
possible approach to the equipartitioning question, since
collisions cannot be made responsible for energy transfer
in linacs.

CONCLUSIONS

The coupled motion between the two tranverse coordi-
nates of a particles beam is arising from the space-charge
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Figure 4: The ratio of oscillations energies ξ and
anisotropic ratios, χ and η in beam propagation. ξ is repre-
sented by red line, and χ and η are overlapping represented
by blue line.

forces. A beam with non-uniform charge distribution al-
ways gives rise to coupled motion. However, it is only
when the ratio rx/ry ≈ 1 and large beam size-rms mis-
matched that the coupling produces an observable effect
in the beam as a whole. This effect arises from a beat-
ing in amplitude between the two coordinate directions
for the single-particle motion and from the core-core reso-
nances, resulting in growth and transfer of emittance from
one phase plane to another, in the beam developing an ellip-
tical shape along of the directions preferential and therefore
in the fast transition from isotropic to anisotropic beam pro-
files. Future analyzes will demonstrate that the equilibrium
state system is a anisotropic parabolic distribution.
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