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Abstract

3D simulation studies of the transverse impedance bud-
get for long bunches in the FAIR synchrotrons have been
started. Important transverse instability driving sources are
the thin resistive wall and the kicker impedances. The ma-
jor concerns are the required low momentum spreads and
the additional loss of Landau damping due to the trans-
verse space charge tune shift. The simulation code PATRIC
has been extended in order to predict coherent instability
thresholds with space charge and for broadband impedance
sources. Simulation scans were performed to analyze the
improvement of transverse stability in long bunches rela-
tive to a coasting beam.

INTRODUCTION

The FAIR synchrotrons, SIS 18 and the planned SIS
100, will be operated with medium energy, intense heavy
ion beams of low momentum spread. The range of bunch
lengths and bunch profiles during a typical cycle covers
dc beams, long dc-like bunches in barrier buckets, long
bunches in single and in dual rf waves [1]. Before extrac-
tion the bunches are converted into a single, short (50 ns)
bunch. The required accumulation times in SIS 100 are of
the order of 1 s. Because of the high intensities together
with low momentum spreads transverse instabilities driven
by the thin resistive wall [2] or kickers impedances [3, 4, 5]
are of concern. In addition the bunches will experience rel-
atively large transverse space charge tune shifts, compared
to the effective tune spreads for Landau damping. Space
charge itself will not drive coherent instabilities, but is can
greatly modify the stability boundaries (see e.g. [6]). The
space charge induced ’loss of Landau damping’ in coasting
beams has been analyzed in Ref. [7]. In bunched beams
the variation of the incoherent space charge tune shift and
of the coherent tunes shifts along the bunch result in addi-
tional effective tune spreads. Simulation studies performed
for the SNS accumulator ring [8] indicate that the stability
limit is increased in long bunches relative to the equiva-
lent coasting beam. Here we will report first results from a
systematic simulation study of stability limits with space
charge in long bunches using the particle tracking code
PATRIC [9].

TRANSVERSE IMPEDANCE SPECTRUM

The thin resistive beam pipe together with the in-
jection/extraction kicker modules represent important
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impedance contributions in SIS 18 and SIS 100. The beam
pipe impedance affects the coherent betatron sidebands be-
tween ≈50 kHz and 1 MHz, depending on the machine
tune. In order to reduce eddy current effects, the stain-
less steel beam pipe in the SIS 18 magnets is only 0.3
mm thick. The skin depth is 1 mm at the injection en-
ergy of 11.4 MeV/u. For the stainless steel beam pipe in
the planned SIS 100 magnets, a wall thickness of a few 0.1
mm will be required. In addition to the large impedance
contribution of a thin beam pipe at low frequencies also the
shielding effectiveness of the pipe is of importance [2]. The
impedance of the ferrite-loaded kickers can be divided into
two parts [5]. Below frequencies ≈ 50 MHz the horizon-
tal impedance is dominated by the external circuit. Above
≈ 200 Mhz the Ferrite contribution dominates. For coast-
ing beams and for long bunches we are concerned about
transverse impedances below ≈ 50 MHz . Fig. 1 shows
the calculated transverse impedances (real parts) of the re-
sistive wall and of the kickers in SIS 18 for 200 MeV/u
beam energy. In the beam dynamics simulations we will
use a transverse oscillator model with Qr = 2 and reso-
nance frequency fr ≈ 8 MHz as a rough approximation of
the kicker impedance. The resulting curve is shown in Fig.
1. Because the beams in the FAIR synchrotrons typically
fill a large fraction of the pipe, the dominant imaginary
impedance contribution is expected to arise from the im-
age currents. The corresponding space charge impedance
is

Zsc
⊥ = −i Z0R

β2
0γ

2
0b

2
(1)

with the ring radiusR, the beam pipe radius b, the relativis-
tic factors β0 and γ0.

In Fig. 1 also the threshold impedance for coasting beam
transverse instabilities is shown. This threshold is calcu-
lated from the circle criterium (see e.g.[6])

| ΔΩc − ω0ΔQ |� FSδrms (2)

with the revolution frequency ω0, the space charge tune
shift ΔQ, the effective chromaticity

S = ω0 (ξ − (n±Q0)η0) (3)

the form factor F , the harmonic number n, the rms mo-
mentum spread δrms and the coherent frequency shift

ΔΩc = − i

8π2

q2N

mγ0cQ0
Z⊥ (4)

with the bare tune Q0, particle number N , charge q and
mass m. In Fig. 1 one can see that the ’loss of Landau
damping’ due to the space charge tune shift is effective be-
low ≈ 10 MHz. Here the impedance budget for a coasting
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Figure 1: Calculated transverse impedance spectrum for
SIS 18. Shown are the resistive wall impedance and the
horizontal kicker impedance (real parts). The dashed curve
represents the ’impedance budget’ for a coasting beam.

beam would be essentially zero, provided that no additional
Landau damping mechanisms are effective. At higher fre-
quencies Landau damping due to finite momentum spread
leads to a sufficient stabilization of coasting beams.

IMPLEMENTATION OF IMPEDANCE
KICKS IN PATRIC

PATRIC [9] is a 3D tracking code developed at GSI
for simulation studies of coherent instabilities with self-
consistent space charge in ring accelerators. In this section
we will describe the implementation of impedance kicks in
PATRIC, which is similar to the scheme presented in Ref.
[10]. The ’dipole moment times current’ at a fixed ring po-
sition s is ψ(t).The resulting horizontal kick per turn (see
e.g. [10]) is

Δx′imp =
∫
F⊥ds
β2

0E0
= (5)

Re

⎛

⎝ iq

β0E0

∑
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⎞

⎠

with the frequency spectrum ψ(Ωj) at the coherent dipole
oscillation frequencies

Ωj ≈ (n±Q0)ω0 (6)

The horizontal dipole moment along the longitudinal parti-
cle position z is defined as

ψ(z, t) = β0c

∫
xρ(x, y, z, t)dxdy (7)

and the Fourier spectrum is (ring circumferenceL)

ψ±
n (t) = exp(∓iQ0ω0t)

∫ L

0

ψ(z, t) exp(−inz/R)dz

(8)

The amplitude ψn(t) varies slowly with time. For lumped
impedances the resulting kick is applied every Δs

Δx′imp(z, t) =
Δs
L

q

β0E0
× (9)

Re

(

i exp(±iQ0ω0t)
∑

n

ψ±
n (t)Z⊥[(n±Q0)ω0] exp(inz/R)

)

For a localized impedance source we set Δs = L and the
kick is applied every turn.

APPLICATION TO LONG BUNCHES IN
SIS 18

Our aim is to compare the transverse stability bound-
aries for long bunches in rf buckets and in barrier buckets
with the equivalent coasting beam. Therefore we perform
parameter scans by varying the imaginary space charge
impedance ZI = Zsc

⊥ and the maximum real value of the
transverse oscillator impedance ZR = Zmax

⊥ approximat-
ing the kicker. The beam parameters are chosen according
to the expected values for U 28+ beams in SIS 18 at 200
MeV/u, which is the injection energy for SIS 100. The
resonant frequency of the oscillator impedance at the har-
monic number n = fres/f0 ≈ 10. The coasting beam
space charge tune shift is ΔQ = −0.05. Instead of the
self-consistent space charge solver we use a linear space
charge force which is proportional to the local line den-
sity and which moves with the local offset. Fig. 2 shows
the obtained maximum beam offset amplitude for different
(ZR, ZI) and for a coasting beam with an elliptic momen-
tum distribution. One can see that the beam offset remains
at the initial noise level for impedances inside the stabil-
ity boundary obtained from the dispersion relation. Dif-
ferences between the analytic stability boundary and the
simulations results for low ZR can e.g. be addressed to the
finite simulation time. Fig. 2 is also a code validation ex-
ample. The expected kicker and space charge impedances
in SIS 18 are indicated in Fig. 2 as a red dot.

In the case of a beam with a small gap (covering 20%
of the ring circumference) provided by barrier rf pulses we
obtain a stability boundary that is very close to the one for
the equivalent coasting beam. Fig. 3 shows a snap shot
of the instability evolution in the rf barrier bucket. Out-
side the coasting beam stability boundary and for for small
ZR we observe a saturation of the instability at moderate
amplitudes (inside the aperture). The bunch remains in a
turbulent state.

For a parabolic bunch profile the situation is different. In
Fig. 4 we observe a larger threshold impedance ZR with
increasing image current impedance | ZI |. This behav-
ior can be explained in terms of the coherent frequency
shift variation along the bunch. The maximum coherent
frequency shift ΔΩsc

c at the bunch center due to the image
currents is given through Eq. (4) with Z⊥ = Zsc

⊥ . The
resulting coherent frequency spread is δΩ =| ΔΩsc

c |. For
the m = 0 mode (rigid-bunch oscillation) this frequency
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Figure 2: Maximum beam offset amplitude for a coasting
beam as a function of (ZR, ZI). The curve represents the
stability boundary obtained analytically for an elliptic mo-
mentum spread distribution.

spread can be directly associated with the damping rate.
For m > 0 the effective spread per wave length will be
smaller. A possible scaling law for the damping rate is

τ−1
c ∝ | ΔΩsc

c |
m

(10)

If we simply equate this damping rate with the growth rate
from Eq. (4) with Z⊥ = ZR we obtain the following
threshold law

ZR � | Zsc
⊥ |
m

(11)

which approximates very well the simulation results, if we
set m ≈ 25 (see Fig. 4). However, the observed mode
number is close to m ≈ 8. More studies are needed to
understand this damping mechanism for modesm > 0 and
also for different bunch profiles (e.g. in barrier buckets). It
is important to point out, that the linear space charge tune
shift along the bunch does not cause damping.

CONCLUSIONS

The stability of transverse coherent oscillations in long
bunches with space charge under conditions relevant for
the FAIR synchrotrons has been studied. We compare the
instability thresholds obtained from simulation scans for
bunched beams and for the equivalent coasting beams. We
find that the coherent frequency shift along the bunch, that
results from image currents, can lead to a stabilization.
The equivalent coasting beam would be unstable due to the
space charge induced loss of Landau damping. A more
detailed understanding of the responsible damping mecha-
nism still needs to be developed. The coherent frequency
shift in barrier buckets is mostly constant along the bunch
and therefore the stability properties are very close to coast-
ing beams.

Figure 3: Snap shot of the instability evolution in a barrier
rf bucket. Shown are contour plots of the densities in (x, z)
and (x, y) phase space together with the dipole moment
along the z axis.
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Figure 4: Maximum beam offset amplitude in a bunch as
a function of (ZR, ZI). The curve represents the stabil-
ity boundary obtained analytically for a coasting beam and
an elliptic momentum spread distribution. The dashed line
represents Eq. (11) with m = 25. The simulation scan has
been concentrated on a thin strip along the ZI axis in order
to resolve the stability threshold.
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