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Abstract 
The High Energy Storage Ring (HESR) of FAIR 

project has the racetrack lattice, where each arc has the 
even number of super-periods Sarc and the tune with one 
unit smaller ν=Sarc-1 in both planes. Due to this 
fundamental feature the total n-order multi-pole is entirely 
cancelled and the regular errors can be fully compensated 
inside of one arc. In case of the random multi-pole errors 
the dynamic aperture is determined by the structure 
resonances excitation. We consider both regular and 
random multi-pole influence on the dynamic aperture and 
the possible correction scheme. 

INTRODUCTION 
The HESR lattice consists of two arcs and two straight 

sections for target and cooling facilities with 
circumference ~500 m [1]. Figure 1 shows the common 
view of HESR lattice and the layout of half superperiod. 

 

Figure 1: Schematic layout of the HESR lattice with the 
half superperiod of arc. 

In order to minimize the preparation procedure for each 
experiment the HESR lattice has to have the decoupled 
functions responsible for global parameters of the 
machine like transition energy, zero chromaticity, 
dispersion suppressing and local parameters like beam 
luminosity on target, optimum parameters for cooling, 
injection system. 

The arcs play the most important role for global 
parameters. We considered two options of lattice, and 
both have a racetrack shape with two arcs and two 
straight sections. In the first option the arc has the four-
fold symmetry with four superperiods. In the second 
option the arc has the six-fold symmetry with six super 
periods. The phase advance arcπν2  per arc is chosen 

0.32 ⋅π  and 0.52 ⋅π  in first and second options 
correspondingly. To suppress dispersion function on the 
straight sections for the beam with non-zero momentum 

spread the arc has to satisfy the following conditions: the 
phase advance is integer and the total chromaticity is 
corrected to zero in the arc. Each super period consists of 
three FODO cells with 4 super conducting bending 
magnets (B=3.6T) and super conducting quadrupoles 
(G<75T/m). 

The arc has the separated functions to control such 
machine parameters like [2]: 

- the momentum compaction factor α  is 
controlled by central focusing quadrupole QF2; 

- the horizontal tune is controlled by focusing 
quadrupole QF1; 

- the vertical tune is controlled by defocusing 
quadrupoles QD. 

Figure 2 shows the yx,β  and dispersion functions in 

the arc with six-fold symmetry and the elements 
placement. 

 

Figure 2: β-functions and dispersion on the arc (6-fold 
symmetry option). 

THE HESR OPTICS AND BUILT-IN 
CORRECTION SCHEMES 

Let us consider a common ideology of the lattice 
construction taking into account necessary correction 
schemes for the total chromaticity, non-linear chromatic 
sextupoles influence up to second order of a perturbation 
theory and the multipole regular errors in bend magnets or 
quadrupoles. As you see the HESR optics consists of the 
bend magnets, the quadrupoles, the sextupoles and the 
multipole correctors. Besides, due to the imperfections the 
multipoles errors are added in the lattice. 

Linear optics. Chromaticity correction 
In optics with quadrupoles and bend magnets we need 

to correct the total chromaticity effect. It is defined by all 
quadrupoles placed in the ring as the variation of the 
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betatron tune yx,ν  with the relative momentum deviation 

pp /Δ=δ . For this purpose the sextupoles are installed 

and their integral contribution over whole ring 
circumference C into the chromaticity is equal: 
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where S(s) is sextupoles strengths. It is clear to minimize 
the sextupole strengths and to split the chromaticity 
correction in the horizontal and vertical planes they have 
to be allocated in the maximum dispersion and different 

xβ  and yβ  values correspondingly. 

Non-linear optics. Chromatic sextupoles in the 
first order of perturbation theory 

Together with sextupoles the high orders non-linear 
effects are added in the lattice optics. Considering 
sextupoles in the first approach of the perturbation theory 
within the scope of Hamiltonian formalism [3], we can 
get condition for cancelling of the total multipole of third 
order: 
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where yxS ,  are the sextupole gradients, yx μμ ,  - the 

phase advances per one superperiod. Thus, in the first 
approach we have an exact condition for compensating 
each sextupole’s non-linear action by another one, located 
in the different half arcs and separated by 2arcS  number 
of superperiods: the phase advance between them is equal 

)2(2)2()(2 arcarcarcarc SS νπνπ =⋅  and their non-
linear actions are identical as far as possible (see Fig.2). 

This principle can be applied by analogy to compensate 
the regular multipole errors in the bend magnets or 
quadrupoles as well, since for any element its twin exists 
on another half arc where non-linear kick is compensated. 

Non-linear optics. Chromatic sextupoles in 
second order of perturbation theory 

In the second order of perturbation theory sextupoles 

give contribution in the non-linear tune shifts sext
xyyx ,,ζ  

also. The reason of this effect is an excitation of the third 
order resonance with the sextupoles. On the other hand 

the non-linear tune shifts oct
xyyx ,,ζ  arise already in the first 

approach due to the octupoles. It is given by expressions 
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accurate to a constant factor. In (3) xyyxO ,,  are the 

octupole gradients. Thus, rising the octupole components 
in the multipole correctors we can compensate non-linear 
sextupole influence in second approach. 

MULTIPOLE  CORRECTION  SCHEME 
FOR REGULAR AND RANDOM ERRORS 

A non-linearity origin follows obviously from a view of 
Hamiltonian function for charged particle motion [3]. 
Even in ideal optics and for the monochromatic beam 
each n-th multipole nM  in composition with the 

curvature mh  creates all higher multipoles mnM + . In 

case of non-monochromatic beam 0≠Δ≡ ppδ  each 

multipole of n-th order nM  gives all multipoles 

)1(1 −÷ nM  of 1÷(n-1)-th order in the place where D≠0. In 

case of the closed orbit distortion each n-th multipole 

nM  gives additionally all multipoles )1(1 −÷ nM . 

Besides the built-in correction scheme specified above, 
let us consider the multipole correction scheme with 
multipole correctors by the example of imperfections in 
the bend magnets. It is clear that all high order multipole 
components appear in the bend magnets. The main effect 
of the high order errors influence is the non-linear tune 
shifts. 

The regular errors in magnets 
Let’s consider the case of the regular errors in the bend 

magnets. Figure 3 shows the non-linear tune shift versus 
the sextupole and octupole component errors in the bend 

magnet measured in the units 0_
4 /10 Bb magsextΔ×  and 

0_
4 /10 Bb magoctΔ×  correspondingly. 

 

Figure 3: The non-linear tune shift vs. the sextupole 

0_ / Bb magsextΔ  and octupole 0_ / Bb magoctΔ  

components in bend magnet. 

 

Figure 4: The non-linear tune shift versus the octupole 

components in multipole horizontal hcor
octb  and vertical 

vcor
octb  correctors. 

From the numerical simulation we have found out that 
the horizontal tune shift is more sensitive to the errors in 
the bend magnets. In order to compensate the non-linear 
tune shifts we use the multipole correctors located near 
each quadrupoles (see Fig. 1, 2 and 4). 
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As we can see the horizontal and vertical correctors 
influence on non-linear tune shifts are decoupled each 
from other and it allows to compensate the tune shifts in 
both planes independently. 

The random errors in magnets 
In case of the random errors we cannot define exact 

dependence between the errors in magnets and the 
corresponding tune shifts. Thus, we need to verify the 
correction scheme on particular example of random errors 
distribution. 

The algorithm of sextupole errors simulation: 
- The sequence of random variables under the 

normal law of distribution is created according to 
number of magnets; 

- This sequence is used for definition sextupole 
errors in the bend magnets and the values of 
errors are adjusted for size with an multiplication 
by constant; 

- Then for test distribution of particles we define 
as much as possible admissible size of errors at 
which there are no the particles losses. Taking 
this into account we fix one of the errors 
realizations which gives the maximal tune shift 
from a working point; 

- For the test particles distribution and the chosen  
set of errors we build the dependence between 
tune shifts and particles amplitude. Then we 
check an opportunity of compensation by 
correctors; 

- At the end we track the line of particles in the 
phase space and verify modification of this line 
after tracking in case of errors and their 
correction.   

Figure 5 shows the dependence between tune shifts in 
horizontal (vertical) plane and the random errors size for 
sextupole 2b , octupole 3b  and decapole 4b  components 
in the bend magnets. Further we will consider the case 
with maximal tune shift from the working point 
( 18.12,16.12 == yx νν ) – the errors in sextupole 

component of the bend magnets. 

 
Figure 5: Betatron tune shifts vs. the random errors size 
( |tune x, y   -  (12.16; 12.18)| ). 

Figure 6 shows the dependence between tune shifts and 
particles amplitude in the worst case of the sextupole 

random errors set with / without octupole components 
correction by the multipole correctors. Thus, we have an 
opportunity to compensate non-linear tune shifts by the 
correctors. 

 
Figure 6: Tune shifts (from sextupole errors) vs. particles 
amplitude with / without octupole correction. 

Figure 7 shows the qualitative attribute that a phase 
space filamentation due to non-linear effect increases 
effective phase space occupied the line in phase space, 
hence emittance increasing. Also we see at least there is a 
possibility of minimization of this effect by multipole 
correctors scheme. 

 
Figure 7: The phase space filamentation due to random 
sextupole errors in the bend magnets and the multipole 
correction scheme. 

CONCLUSION 
The lattice is developed with possibility to compensate 

high order non-linearity due to regular and random errors 
with mulipole correction scheme and compensation 
feature built-in in the lattice. We are thankful to R. Maier 
for attention to our work. 
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