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Abstract 
It was observed that a bunch-length shrunk with 

acceleration in the Induction Synchrotron (IS) 
experiment, where a single proton-bunch injected from 
the 500 MeV Booster was accelerated to 6 GeV in the 
KEK-PS.  A novel technique capable of quantitatively 
predicting the adiabatic phenomenon of bunch 
shortening has been developed, based on a hypothesis 
that the particle oscillation amplitude varies inversely 
proportional to the square root of its oscillation 
frequency.  The experimental result and analytical 
prediction is in good agreement with each other. 

INTRODUCTION 
  The induction acceleration experiment was carried out 
using the KEK 12 GeV proton synchrotron (12GeV-PS) 
in a series of experiments to demonstrate a proof of 
principle of the IS [1]. Details of the experiments have 
been described in the literatures [2,3,4,5].   
A specific property of the functional separation of 

acceleration and confinement in the IS allows us to 
control the beam size through the entire period of 
acceleration.  However, the accelerated beam bunch is 
subjected to adiabatic damping, as seen in the 
conventional RF synchrotron.  It is quite important to 
know how the bunch size evolves through the entire 
acceleration in the IS and what factors dominantly 
determine the bunch size.  A theoretical approach to 
predict the temporal evolution of the bunch size is 
developed.  After the approach is carefully justified by 
comparing with computer simulations, the theoretical 
prediction is compared with the experimental results.  
Last we will discuss how this theoretical approach can 
provide a useful tool to estimate a temporal evolution of 
the bunch size associated with adiabatic changes in the 
external parameters, such as the barrier voltage 
amplitude and a time-interval between barrier voltages. It 
is noted that longitudinal space charge effects are not 
taken into account in the present discussions because 
longitudinal space charge forces were small compared to 
confinement voltage provided during the experiment.   
 

EXPERIMENTAL RESULTS 
  The bunch profile which was monitored by the wall 

current monitor, was recorded every 33 msec from the 
injection to the end of acceleration.   

 
 
 

Experimental results through the entire acceleration 
period are plotted for typical four shots in Fig. 1, where 
the bunch size is defined as a width measured at 5% of 
the peak height.  From Fig. 1, we can clearly identify 
four regions:  At the injection (I), the bunch width is 100 
nsec but it quickly increases to ~ 400 nsec because of 
mismatching to the barrier bucket [3]. Tumbling of the 
bunch in the phase space and the succeeding 
filamentation are apparent there, leading to a long bunch 
width.  In the remaining minimal field region (II) before 
acceleration, the bunch size is almost constant. This 
implies good matching with the barrier bucket shape 
throughout the region.  The initial acceleration region 
(III) is characterized by serious beam loss [4]. Quick 
shrinking of the beam size is caused by the beam loss in 
addition to damping associated with acceleration.  The 
reason of beam loss is not fully understood, although it is 
speculated that the control of the trigger pulse density is 
not enough at this transient region.  There is no beam 
loss in the constant acceleration region (IV).  A steady 
state damping is clear.  Near the end of acceleration 
region, the bunch width is almost constant. We will 
discuss more about this region hereafter. 
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Figure 1: Evolution of the bunch length in time. 

 
THEORY 

To develop the theory, we set a hypothesis that the 
phase oscillation evolves such that the instantaneous 
oscillation amplitude is inversely proportional to the 
square root of the phase oscillation frequency.  This 
hypothesis is originated from an analogy of the WKB 
solution for a harmonic oscillator with slowly varying 
parameters.  Note that the phase motion of a particle 
trapped in the barrier voltages strongly depends on the 
oscillation amplitude; in this sense, the motion is a 
nonlinear motion.   * work supported by a Grant-In-Aid for Creative Scientific Research (KAKENHI 15GS0217) 
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Here, an analytical formula to give the temporal 
evolution of the oscillation amplitude, which represents 
an outer bunch-edge, is briefly introduced below [6]. 
  For simplicity, the induction cells for acceleration and 
confinement are represented by a single device in the 
present acceleration model.  Two dynamical variables of 
energy E and phase φ are used.  The former is the total 
energy of a particle.  The latter is defined by ωst, where 
ωs is the angular revolution frequency of the ideal 
particle (synchronous particle) and t is time.  Note that 
the synchronous particle is always accelerated with the 
designed acceleration voltage Vac, which is uniquely 
determined by the magnetic ramping pattern of 
accelerator in terms of ρC0dB/dt, where ρ is the bending 
radius, C0 is the machine circumference, and B is the 
magnetic flux density.  Its dynamical variable has a 
subscript “s”.  These dynamical variables are measured 
right before entering the above representative 
acceleration device.  Introducing W =ΔE/ωs  and (ΔE=E-
Es), changes in W and φ per turn can be given by 

 ,                                (1) 
where e is the unit charge, V(φ) is the induction voltage 
seen by a particle, V(φ)=Vbb+ Vac, η is the slippage factor 
defined by 1/γ2

T – 1/γ2
s (γT is the transition gamma of the 

accelerator ring) and β and γ are the relativistic beta and 
gamma, respectively.  We assume the barrier voltages 
Vbb with a trapezoidal profile as depicted in Fig. 2a.  As 
the parameters of η, βs, γs, Es, and ωs can be regarded as 
constant for a short time period of the single synchrotron 
period, the orbit in the phase space is closed; it is nothing 
but the contour derived from the Hamiltonian, which 
mimics the barrier bucket shape as depicted in Fig. 2b.  
The motion in the barrier bucket is qualitatively divided 
into three regions: (I) focusing in the linear potential, (II) 
focusing in the parabolic potential, and (III) drift in the 
null voltage region.  It is noted that the motion in region 
(I) and (II) is subject to adiabatic damping.  In addition, 
it is emphasized that the exact solution throughout the 
region is known for the above short time period.   
To analyze the temporal evolution of this oscillation 
amplitude associated with acceleration, we start from the 
canonical Eq. (1).  From Eq. (1), a temporal change in 
the phase of an individual particle is governed by Eq. (2). 
d 2φ
dt2 −

dA dt( )
A t( ) ⋅

dφ
dt

+
eVbb φ( )A t( )

2π = 0
,                 (2) 

where the abbreviation A(t)=|η|ω2
s/βsEs is used for 

energy below transition energy.   
To eliminate the damping term, a new variable 
u(t)=φ(t)/v(t) is introduced.  When v(t)=A1/2, Eq.(2) 
reduces to 

d2u
dt2 +

d2A dt2

2A t( ) −
3
4

dA dt( )2

A2 t( )
 

 
 
 

 

 
 
 
⋅ u t( )+ B t( ) = 0

,          (3) 

 
Figure 2: (a) Barrier voltage profile with three distinct 
regions and peak height of V0. (b) Typical trajectory in 
the phase space. 

   
where B(t)=eVbb(φ)A1/2/2π.  Since A(t) is a slowly 
varying function of time, its first-order and second-order 
time-derivatives are small.  So, we arrive at a final form 
of the phase oscillation equation that must be 
substantially solved, d2u/dt2=-B(t).  The restoring force 
B(t) can be assumed to be constant during a single 
synchrotron oscillation period T, which is much shorter 
than 1/(dA/dt)/A.  In addition, the synchrotron oscillation 
is symmetric in the phase space, as depicted in Fig. 2b.  
If we obtain exact solutions in three regions of I, II, and 
III in Fig. 2a, the synchrotron frequency Ωs=2π/T is 
written in an analytic form [6]. From the hypothesis, the 
instantaneous amplitude of the phase, <φ>, is given by 

φ = C
A
Ωs                                    (4) 

where C is a constant coefficient determined from the 
initial condition.  Introducing the instantaneous 
oscillation amplitude in time <τ>=<φ>/ωs and 
substituting the analytic form into Eq. (4), we obtain 

    
 (5)                

Eq. (5) is a transcendent function of <τ>.  Note that the 
equation includes information about the initial condition 
of an individual particle through the term of C, the 
barrier conditions of V0, Δt1, and Δt2, and the parameters 
of ωs, βs, Es, and η uniquely determined for a fixed 
accelerator. By solving Eq. (5), we can obtain the 
temporal evolution of the oscillation amplitude in time 
associated with the acceleration. 
  If the barrier condition is maintained to be a constant, a 
particle, the oscillation amplitude of which has initially 
extended to the flat barrier region (I), will fall in the 
linear barrier region (II) as a result of the adiabatic 
damping.  In this situation, Eq. (5) becomes invalid. The 
instantaneous oscillation amplitude in time must satisfy 
the following relationship, 

τ 2 =C2 8ηΔt1
πωseVbbβs

2Es

π
2

+
Δt2

τ − Δt2[ ]
 
 
 

  

 
 
 

  ,    (6) 

dW
dt = 

e V φ ( ) −Vac [ ]
2 π 

d φ 
dt = ω s2η 

β s( ) 
2 
Es 

W
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where C is determined from the boundary condition.  
Consequently, Eq. (5) and Eq. (6) gives the oscillation 
amplitude in the regions where <τ> > (Δt1+Δt2) and <τ> 
< (Δt1+Δt2), respectively. These two solutions should be 
connected at <τ> = (Δt1+Δt2).   
  The present result has been obtained assuming the 
trapezoidal profile of the barrier voltage.  It is 
straightforward to know the temporal evolution of the 
oscillation amplitude <τ> for more extreme profiles, 
such as a rectangular profile (Δt1=0), a short profile 
(Δt2=0), and a discrete profile (Δt1=Δt2=0).  For the 
rectangular profile, 

τ 2 =C2 8η
πωseVbbβs

2Es
2 τ − Δt2( )+

Δt2

2 τ − Δt2( )
 
 
 

  
 
    (7) 

This form mostly suggests a particular feature of the 
adiabatic damping in the induction synchrotron, which 
can be distinguished from that in RF synchrotrons.  A 
solution of Eq. (7) is always written in terms of 
<τ>=g(t,Δt2)+ Δt2, where g(t,Δt2) is a slowly varying 
function of t and is subjected to adiabatic damping and 
gradually becomes smaller.  Since the isolated offset 
term of Δt2 is controllable, the oscillation amplitude can 
be maintained in a well controlled manner throughout the 
acceleration, as expected. 

COMPARISON WITH SIMULATION AND 
EXPERIMENTAL RESULTS 

Experimental results and analytical predictions can be 
compared only after loss at the beginning of acceleration, 
i.e. from 0.633 sec from injection.  From this time 
onwards bunch shrinking can be attributed only to 
adiabatic damping.  Assuming an initial bunch length of 
190 nsec, which was taken from the experimental result 
at t=0.633 sec, the theoretical prediction is plotted in Fig. 
3.  Ideal simulation result for a trapezoidal barrier is 
plotted in Fig.4. where Eq.(5) and Eq.(6) were used for 
the case when  <τ> > (Δt1+Δt2) and <τ> < (Δt1+Δt2), 
respectively. We can see that both are in fairly good 
agreement. 

SUMMARY 
A novel theory to estimate adiabatic damping 

phenomenon in the induction synchrotron has been 
presented.  The theory is based on an analogy of the 
WKB solution for a harmonic oscillator, the parameters 
of which slowly vary in time.  It has turned out that the 
theory can quantitatively explain the experimental results. 
In RF synchrotrons the bunch size infinitely shrinks 
beyond transition energy. We know that this is intrinsic 
feature in the RF synchrotrons.  However, this is not the 
case in an induction synchrotron.  The bunch-length in 
an induction synchrotron is mainly determined with the 
time duration between barrier voltages as expected.  This 
fact has been proven mathematically. There is an another 
approach also to give the temporal evolution of the 
longitudinal beam envelope, which is determined by the 

equation, d2ρ/dt2 + Q2(t)ρ = 1/ρ3.  Assuming that 
everything is in a steady-state and the oscillation system 
is linear, then the envelope solution is straightforwardly 
written by ρ = [1/Q(t)]1/2, where the frequency of the 
linear system Q(t) is a priori assumed to be a frequency 
of the synchrotron motion averaged in a single turn. 
Unfortunately this logic is not justified, because the 
envelope equation is an auxiliary equation to the time-
dependent linear equation and both is always a pair.  
Though the present approach is based on the hypothesis, 
it will create a stir in the adiabaticity problem in 
nonlinear periodic motions. 
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Figure 3: Comparison between the experimental results 
and theoretical predictions after 0.633 sec from injection. 
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Figure 4: Comparison between the simulation results and 
theoretical predictions for ideal trapezoidal barrier. 
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