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Abstract

We discuss the longitudinal dynamics of an unbunched
beam with a collective effect due to the vacuum chamber
and with the discreteness of an N-particle beam (Schottky
noise) included. We start with the 2N equations of mo-
tion (in angle and energy) with random initial conditions.
The 2D phase space density (Klimontovich density) for the
N particles is a sum of delta functions and satisfies the
Klimontovich equation and the Vlasov equation. An arbi-
trary function of the energy also satisfies the Vlasov equa-
tion and we linearize about a convenient equilibrium den-
sity taking the initial conditions to be independent, iden-
tically distributed random variables with the equilibrium
distribution. The linearized equations can be solved using
a Laplace transform in time and a Fourier series in angle.
The resultant stochastic process for the phase space density
is analyzed and compared with a known result. Work is in
progress to study the full nonlinear problem.

INTRODUCTION

We study the effect of a finite number of particles (Schot-
tky noise) in a case where it is believed the Vlasov equation
is a reasonable approximation to the evolution dynamics.
Perhaps the simplest context to study this is the N parti-
cle 2D coasting beam with collective effects modeled by
an impedance and with phase space variables (θ, ε) where
θ is the azimuthal angle and ε = (E − Er)/Er where
E = mγc2. We consider a Vlasov equilibrium density, feq ,
choose N independent and identically distributed random
variables from that distribution and study the evolution of
the Klimontovich density in a linearized approximation.

MODEL

Our initial value problem (IVP) for the N particle coast-
ing beam is

θ̇a = ω(εa) := ωr + kεa , θa(0) = θa0, (1)

ε̇a =
N∑

b=1

W (θa − θb) , εa(0) = εa0 , (2)

where ωr > 0 is the angular velocity of the reference par-
ticle and k > 0 is the slip factor. Note that the vector field
is divergence free, so the flow is measure preserving. In
Appendix I we argue that a reasonable form for W is

W (θ) := −(
qωr

2π
)2

1
Er

∑

n∈Z

Zneinθ , Z0 = 0, (3)
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where βr = ωrR/c, Er = mγrc
2 and R is the machine

radius and Zn is the elementary machine impedance. We
assume that the Zn decay sufficiently fast as |n| → ∞ so
that W is a smooth, 2π-periodic function of zero mean, i.e.,∫ 2π

0
W (θ) = 0.

We abbreviate the IVP (1-2) by ż = w(z), z(0) = z0,
where z := (θ1, ε1, ..., θN , εN )T , and consider (1-2) as a
random IVP specified by a density Ψ0 = Ψ0(z). This den-
sity evolves by the Liouville equation

∂tΨ + w(z) · ∇zΨ = 0 , Ψ(z, 0) = Ψ0(z) , (4)

where w is determined by (1-2). Clearly Ψ(z, t) =
Ψ0(ϕ(−t, z)), where ϕ(t, z0) denotes the solution of (1-2).

The Klimontovich density F (θ, ε, t; z0) is

F :=
1
N

N∑

a=1

δp(θ − θa(t))δ(ε − εa(t)) , (5)

where δp is the 2π-periodic delta function. In probability
theory, F is sometimes called an empirical density. In the
following we will suppress the z0 dependence. Calculation
of the partial derivatives of F from (5) shows that F satis-
fies the Klimontovich equation

∂tF + ω(ε)∂θF +
N∑

a=1

W (θ − θa(t))∂εF = 0 ,

(6)

and the Vlasov equation

∂tF + ω(ε)∂θF + NL(F )∂εF = 0, (7)

both with the initial condition

F (θ, ε, t = 0) =
1
N

N∑

a=1

δp(θ − θa0)δ(ε − εa0) . (8)

The operator L in the Vlasov equation is

L(χ)(θ, t) :=
∫

χ(θ′, ε′, t)W (θ − θ′)dθ′dε′ . (9)

The Klimontovich equation (6) and the Vlasov equation
(7) are not the same, e.g., a function only of ε satisfies (7)
(since W has zero mean) but not (6).

Taking the expected value of (7), with respect to the only
random quantity z0, and defining f := EF leads to

∂tf + ω(ε)∂θf + NL(f)∂εf = −NE(L(δF )∂εδF ) , (10)

where δF := F − EF = F − f is the fluctuation of F .
Thus f is an approximate solution of the Vlasov equation
if the rhs of (10) is small. Equation (10) is the analogue of
the corresponding equation in the BBGKY hierarchy where
f is equal to the single particle probability density f1 (see
Appendix II).
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ANALYSIS

We now study the deviation of the Klimontovich density
F from the Vlasov equilibrium density f = feq(ε). Thus
we take

Ψ0(z) = feq(ε1) · · · feq(εN ) (11)

and note that EF (θ, ε, t = 0) = feq(ε), where∫
feq(ε)dθdε = 1. Let F = feq + G then G satisfies

∂tG + ω(ε)∂θG + NL(G)(f ′
eq(ε) + ∂εG) = 0. (12)

We will study an approximation to G by dropping terms in
(12) which are nonlinear in G. The linearized IVP is

∂tG + ω(ε)∂θG + NL(G)f ′
eq(ε) = 0 , (13)

G(θ, ε, t = 0) = −feq(ε) +
1
N

N∑

a=1

δp(θ− θa0)δ(ε− εa0).

(14)
In the following, G will refer to this approximate G. Since
EG(θ, ε, t = 0) = 0 it follows from (13) that EG(θ, ε, t) =
0 whence δF = G.

To solve the IVP (13),(14) we expand G in a Fourier
series, giving

∂tGn + inω(ε)Gn + 2πNf ′
eq(ε)WnHn(t) = 0,

Gn(ε, 0) =
1

2πN

N∑

a=1

δ(ε − εa0)e−inθa0 (15)

for n �= 0 where

Hn(t) :=
∫ ∞

−∞
Gn(ε, t)dε , (16)

so (15) is an integro-differential equation. For n = 0,
Gn(ε, t) = Gn(ε, 0) whence we only study n �= 0.
We take the Laplace transform in the form G̃n(ε, Ω) :=∫ ∞
0

eiΩtGn(ε, t)dt, giving us

G̃n(ε, Ω) =
iGn(ε, 0)
Ω − nω(ε)

− i2πNWnf ′
eq(ε)H̃n(Ω)

Ω − nω(ε)
, (17)

where H̃n is the Laplace transform of Hn. Note that for
functions which have a Laplace transform, the transform is
analytic on a set of the form {z ∈ C : �m(z) > c0}, for
some real c0.

To obtain H̃n we integrate (17) over ε and use the initial
condition in (15) yielding

Dn(Ω)H̃n(Ω) =: H̃i
n(Ω), (18)

where

H̃i
n(Ω) :=

i

2πN

N∑

a=1

e−inθa0

Ω − nω(εa0)
, (19)

and the dispersion function

Dn(Ω) := 1 + i2πNWn

∫ ∞

−∞

f ′
eq(ε)dε

Ω − nω(ε)
. (20)

The dispersion function also arises naturally in the context
of (13). Let G(θ, ε, t) = B(ε) exp(i(nθ−Ω0t)) then it fol-
lows that B(ε) = −i2πN(Ω0−nω(ε))−1f ′

eq(ε)Wn

∫
Bdε.

Integrating over ε gives Dn(Ω0)
∫

Bdε = 0 and thus so-
lutions of the given form exist only if Ω0 is a zero of the
dispersion function.

Physically, a natural equilibrium distribution is a Gaus-
sian. However, a Cauchy distribution allows certain in-
tegrals to be evaluated analytically [1] and so we take
feq(ε) := α

2π2(α2+ε2) with α > 0. In this case the dis-
persion function takes the form

Dn(Ω) =
(Ω − Ωn1)(Ω − Ωn2)

(Ω − Ωp)2
, (21)

where

Ωn1 := nωr + ansgn(nbn) − i(|n|kα − |bn|) ,

Ωn2 := nωr − ansgn(nbn) − i(|n|kα + |bn|) ,

Ωp := nωr − iαnksgn(n) ,

and

Wn =: |Wn| exp(i[θn + π]) ,

an :=

√
2πN |n||Wn|

k
cos(

θ|n|
2

− π

4
) ,

bn :=

√
2πN |n||Wn|

k
sin(

θ|n|
2

− π

4
) .

A partial fraction expansion on (18) leads to

H̃n(Ω) =
i

2πN

N∑

a=1

e−inθ0a

(
A1(ε0a)
Ω − Ωn1

+
A2(ε0a)
Ω − Ωn2

+
A3(ε0a)

Ω − nω(ε0a)

)
, (22)

where
A3(ε0a) := (Dn(nω(ε0a)))−1, (23)

and, for (j, k) = (1, 2) or (2, 1)

Aj(ε0a) :=
(Ωnj − Ωp)2

(Ωnj − Ωnk)(Ωnj − nω(ε0a))
. (24)

Inverting (22) gives

Hn(t) =
1

2πN

N∑

a=1

e−inθ0a

(
A1(ε0a)e−iΩn1t

+A2(ε0a)e−iΩn2t + A3(ε0a)e−inω(ε0a)t

)
. (25)

The Gn can now be determined from (15) which then gives
G.
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We finish by studying Hn. We first note that
E(Hn(t)) = 0. When �m(Ωnj) < 0, i.e., in the case
of linear stability, we have for large t the covariance:

E(Hn(t)∗Hn(t + s))

=
1

2πN

∫ ∞

−∞
feq(ε)

e−inω(ε)s

|Dn(nω(ε))|2 dε

=: Cn(s) . (26)

where ∗ denotes complex conjugation. Thus Hn becomes
a weakly stationary stochastic process for large t. Making
the change of the variable ε = (λ − nωr)/nk we see that
Cn(s) is the Fourier transform of

σ(λ) :=
1

N |n|k|Dn(λ)|2 feq

(
λ − nωr

nk

)
, (27)

which is therefore the spectral density of the weakly sta-
tionary process. Note that bn is proportional to

√
N , thus

the linear stability is lost if N is sufficiently large. Also,
linear stability is lost as α → 0, i.e., when feq(ε) →
δ(ε)/2π. Thus the hydrodynamical approximation to the
Vlasov equation would not be valid.

We now compare our result with an approach used in [2].
There a ‘noise power spectrum’ is computed by consider-
ing the quantity A(Δ) := 2ΔE(H̃n(λ+ iΔ)H̃n(λ+ iΔ)∗)
in the limit Δ → 0+. For Δ > 0 one has by (18),(19) that

E(H̃n(λ + iΔ)H̃n(λ + iΔ)∗)

=
1

4π2N2|Dn(λ + iΔ)|2 ·
N∑

a=1

E(
1

(λ − nω(εa0))2 + Δ2
), (28)

since cross terms do not contribute because
of statistical independence. Thus A(Δ) =

1
πN |Dn(λ+iΔ)|2

∫ ∞
−∞

Δfeq(ε)dε
(λ−nω(ε))2+Δ2 . Using δ(x) =

(1/π) limΔ→0+
Δ

x2+Δ2 we find limΔ→0+ A(Δ) = σ(λ).
Thus the two calculations give the same result. Note

however that the second calculation does not use the spe-
cific feq , it only uses (18)-(20). Nor does it seem to care
about the analyticity properties of Dn. We suspect that, the
procedure in [2] gives the spectral density of Hn if the lat-
ter is weakly stationary. However, Hn generically is not
weakly stationary. It seems likely that the procedure in [2]
does not make sense if the roots of Dn are in the upper half
plane. If they are in the lower half plane, the process Hn is
not weakly stationary because of the decaying exponents.
We must leave open the question why the two calculations
are in agreement for our special case.

DISCUSSION

We are pursuing the issues raised after (28). In addition,
we are interested in what is really measured in an accel-
erator. Is it the spectral density? What is measured if the
process is not weakly stationary?

Work is in progress to study the full nonlinear problem.
We will continue with the Klimontovich approach devel-
oped here and investigate, in our context, the related tour
de force nonlinear iteration calculation of Vlaicu [1] as out-
lined in Chapter 5 of [3]. In addition we will investigate
the BBGKY approach, the approach discussed in [4] and
the large deviation approach of Donsker and Varadhan, see,
e.g., [5, 6].

APPENDIX I

To see that (1),(2) are not unreasonable we first note
that from the Lorentz equation mγ̇c2 = qE · v where
E is the electric field and v is the velocity. For our
case of circular motion E · v ≈ EazωrR where Eaz

is the azimuthal field and R is the radius. The current
I(θ, t) is approximately qNρ(θ, t)ωr where Nρ is the par-
ticle density. Let V (θ, t) := −2πREaz , then solving
Maxwell’s equations by a Laplace transform in t and a
Fourier series in θ gives Ṽn(Ω) = Z(n, Ω)Ĩn(Ω) with
Z(0, Ω) = 0. See for example [7], where Z(n, Ω) is
called the complete impedance. Approximating Z(n, Ω)
by Zn := Z(n, nωr) we obtain Vn(t) = ZnIn(t) and thus
V (θ, t) = qNωr

∑
n∈Z Znρn(t)einθ . Equations (1),(2)

follow if we define Wn := −Zn(qωr)2/(4π2Er).

APPENDIX II

We assume that Ψ0(z1, ..., zN ) is symmetric under
permutations of the z1, ..., zN . Thus, by the special
form of W (whence of w), Ψ(z1, ..., zN , t) is also sym-
metric under the permutations so we get f(θ, ε, t) ≡
EF (θ, ε, t) = f1(θ, ε, t), where fj(θ1, ε1, ..., θj , εj, t) :=∫

Ψ(θ1, ε1, .., θN , εN , t)dθj+1dεj+1 · · · dθNdεN for j =
1, 2, ..., N − 1 and fN := Ψ.
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