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Abstract
Realistic modeling of coherent synchrotron radiation

(CSR) and the space charge force in single-pass systems
and rings usually requires at least a two-dimensional (2-
D) description of the charge/current density of the bunch.
Since that leads to costly computations, one often resorts
to a 1-D model of the bunch for first explorations. This pa-
per provides several improvements to previous 1-D theo-
ries, eliminating unnecessary approximations and physical
restrictions.

INTRODUCTION

Numerical modeling of CSR and the space charge force
is an important task in the design and study of various ad-
vanced accelerators, for instance in bunch compressors for
X-ray free electron lasers where these effects can degrade
beam quality and prevent lasing. Coherent motion of par-
ticles can be treated self-consistently by the macroparticle
method or the Vlasov equation, either of which provides a
description of the charge/current density (ρ,J) at any time
step. Given present and past values of the source (ρ,J),
we must solve Maxwell’s equations to update the fields
(E,B) for the next time step. This is an expensive step
if one aspires to a realistic 3-D or 2-D model of the source.
A way to economize is to project the realistic source from
macroparticles or Vlasov onto a 1-D manifold, then solve
the Maxwell equations with the resulting 1-D source. It is
plausible that this gives a reasonable picture of gross qual-
ities of CSR and the space charge force, if not the fine de-
tails.

Such a projection method is implemented in the useful
code Elegant [1], but the code does not make a full solu-
tion of the Maxwell equations even with the 1-D source.
Rather, for CSR it uses a formula of Saldin et al. [2] which
approximates the effect of a line charge traversing a single
bend, entering and leaving the bend on a straight orbit. The
profile of charge density λ(z) is invariant in time. Among
more general codes working in higher dimensions, some
such as CSRtrack [4] have a 1-D source option which may
be less restrictive but still involves assumptions that might
be avoided.

The object of the present work is to develop a 1-D model
with a minimum of restrictions on the physics. The result-
ing theory has the following features:

(1) The beam has zero transverse extent, but vertical
extent with an arbitrary but fixed vertical charge distri-
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bution. The longitudinal distribution is arbitrary, and
may be time dependent.

(2) The bunch moves on an arbitrary planar orbit, so that
the finite separation of bends is properly accounted
for.

(3) Longitudinal and transverse forces are finite and are
given in a neighborhood of the bunch by singularity-
free 1-D integrals over retarded times.

(4) Since the full fields are computed with arbitrary γ, the
space charge force is included.

(5) The theory is easily extended to account for shielding
of radiation by the vacuum chamber, represented by
infinite parallel plates [3].

After the bunch description is restricted as in item (1), the
only additional assumptions are (A) The maximum bunch
dimension σ and the distance of the observation point from
the bunch centroid must be small compared to the minimum
bending radius, and (B) The phase space distribution in the
beam frame must undergo little change during a time in
which the bunch moves a distance O(σ).

The charge and current densities satisfy the continuity
equation to a certain approximation. Ideas to achieve more
exact continuity are under study.

DESCRIPTION OF THE MODEL

Position in the laboratory frame is denoted by the vector
(Z, X, Y ) = (R, Y ), where the (Z, X) plane is called hor-
izontal, the Y direction vertical. An arbitrary reference tra-
jectory in the horizontal plane is parametrized by arc length
s and written as Ro(s) =

(
Zo(s), Xo(s)

)
. Unit vectors

t(s) and n(s), tangent and normal to Ro respectively, sat-
isfy the relations

t(s) =
(

Z ′
o(s)

X ′
o(s)

)
, n(s) =

( −X ′
o(s)

Z ′
o(s)

)
(1)

t′(s) = −κ(s)n(s) , n′(s) = κ(s)t(s) (2)

κ(s) = ±1/ρ(s) , 1/ρ(s) = |R′′
o(s)| (3)

The signed curvature κ is the reciprocal of the radius of
curvature ρ, modulo a sign. The sign of κ is determined by
equations (2).

An arbitrary point in the horizontal plane can be repre-
sented in Frenet-Serret coordinates (s, x) as R = Ro(s) +
xn(s). The reference particle representing unperturbed
motion has speed βc, and has location Ro(βct). To lo-
cate points close to the reference particle it is convenient
to replace s by the distance (in arc length) to the reference
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particle, namely z = s − βu , u = ct. Now when z and
x are small compared to the radius of curvature, as assured
by assumption (A), we can expand the representation of a
point R as follows using (2,3):

R = Ro(z + βu) + xn(z + βu)
= Ro(βu) + t(βu)z + n(βu)x + O((z2, xz)/ρ)

(4)

We refer to (z, x) as beam frame coordinates, and write
r = (z, x). Keeping just the linear terms, we have a good
approximation for the lab-to-beam frame transformation,

z = t(βu)·(R−Ro(βu)) , x = n(βu)·(R−Ro(βu)) .
(5)

The solution of Maxwell’s equations is carried out in the
laboratory frame, in which the charge and current densities
are denoted by ρL(RL, u), JL(RL, u), RL = (R, Y ). A
causal solution of the wave equation �F − ∂ 2F/∂u2 = S
with source S(RL, u) is

F (RL, u) =
1
4π

∫
dR′

L

S(R′
L, u − |R′

L − RL|)
|R′

L − RL| . (6)

For scalar and vector potentials φ, A in the Lorenz gauge
the sources are (ρL/εo, muoJL) = Z0(cρL, JL/c), where
Z0 is the impedance of free space.

Details of the vertical distribution of charge are proba-
bly not very important for CSR, since bending of our pla-
nar orbits is independent of Y . Consequently we simplify
by taking a factored form for the densities, ρL(RL, u) =
H(Y )ρ̃L(R, u), and similarly for JL, where H(Y ) is an
arbitrary time-independent function with

∫
H(Y )dY = 1.

According to the analysis in [5], under assumptions (A),(B)
the lab frame densities are related to beam frame densities
by approximate equations as follows:

ρ̃L(R, u) = ρ(r, βu) , J̃L(R, u) = j(r, βu) =
βc[ρ(r, βu)t(βu) + τ(r, βu)n(βu)],

ρ(r, s) = Q

∫
f(r,p, s)dp ,

τ(r, s) = Q

∫
pxf(r,p, s)dp , (7)

where f(r,p, s) is the beam frame phase space density,
normalized to unit integral, Q is the total charge, px =
dx/ds and pz = (γ − γo)/γo. Since ρ(r, βu) and τ(r, βu)
are concentrated in r near Ro(βu), it is valid to use in (7)
the linear relation of r to R as given in (5). The transverse
current βcτn is usually negligible, but we retain it for gen-
erality.

The 1-D model is defined by concentrating the beam
frame densities at the mean value of x,

ρ(z, x, βu) → δ(x − x̄(u))
∫

ρ(z, x, βu)
.= δ(x − x̄(u))ρ(z, βu) , (8)

and similarly for j. Should this step appear as too radical,
one could divide space into bins of pz (or even 2-D bins of
pz and px) and use a reduction such as (8) for the contribu-
tion of each bin Bi. Then the resulting lab frame density
is

ρ̃L(R, u) =
∑

i

Hi(Y )ρi(z, βu)δ(x − x̄i(u)) . (9)

We proceed to find the fields for the i-th bin, dropping sub-
script i, and putting x̄ = 0 to reduce clutter. It will be ob-
vious how to restore x̄ if needed. Fields will be expressed
in terms of the longitudinal densities

ρ(z, s), j(z, s) = βc
[
ρ(z, s)t(s) + τ(z, s)n(s)

]
. (10)

Derivatives will be notated by D1 = ∂/∂z, D2 = ∂/∂s.
We suppose that D2

1ρ and D2
1τ are continuous.

FIELD COMPUTATION

Again downplaying the importance of Y -dependence,
we shall average the fields in Y with respect to the distrib-
ution H . This can be done at the level of potentials rather
than fields. Applying (6) we change integration variable
from Y ′ to ξ = Y ′ − Y to obtain

〈φ〉(R, u) =
1

4πεo

∫
χ(ξ)dξ

·
∫

dR′ ρ̃L(R′, u − [(R′ − R)2 + ξ2]1/2)
[(R′ − R)2 + ξ2]1/2

,

(11)

and a similar formula for 〈A〉, where χ(ξ) =∫
H(Y )H(Y + ξ)dY . Henceforth we write φ,A for

〈φ 〉, 〈A〉.
To evaluate the R′-integral in (11) it is convenient to use

polar coordinates centered at R and then use the retarded
time v in place of the radial coordinate [3]:

R′ = R + ζe(θ) , v = u − (ζ2 + ξ2)1/2 , (12)

where e(θ) = (cos θ, sin θ). This gets rid of the vanish-
ing denominator and also avoids the problem of computing
retarded times. The transformed integral is

φ(R, u) =
1

4πεo

∫
χ(ξ)dξ ·

∫ u−|ξ|

−∞
dv

∫ 2π

0

ρ̃L(R + ζe(θ), v)dθ , (13)

(14)

with ζ = [(u − v)2 − ξ2]1/2. Substituting the 1-D distrib-
ution we have

φ(R, u) =
1

4πεo

∫
χ(ξ)dξ

∫ u−|ξ|

−∞
dv

∫ 2π

0

dθ ·
δ(xc + ζe(θ) · n(βv)) ρ(zc + ζe(θ) · t(βv), βv) ,

(15)
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where xc and zc are components of the chord from the re-
tarded point to the observation point,

xc(R, βv) = n(βv) · (R − Ro(βv)) ,

zc(R, βv) = t(βv) · (R − Ro(βv)) . (16)

Taking ζe ·n as variable of integration in place of θ, and
noting (e · n)2 + (e · n)2 = 1, we can carry out the θ-
integral. Taking care to get the right signs of e · n and e · t
in the four quadrants of θ we find

1
4πεo

∫
χ(ξ)dξ

∫ u−ε(x,ξ)

−∞

ρ̄(R, u, v, ξ)√
b2 − ξ2

dv , (17)

where

b =
√

(u − v)2 − x2
c , x = xc(R, βu), (18)

ε(x, ξ) =
√

x2 + ξ2 , (19)

ρ̄(R, u, v, ξ) = ρ(zc −
√

b2 − ξ2, βv) +

ρ(zc +
√

b2 − ξ2, βv) . (20)

The upper limit of v is less than it was in (15), because
the δ function does not hit for all v < u − |ξ|. The upper
limit in (17) is a good approximation to the precise upper
limit, justified by assumption (A). Notice that x is just the
transverse component of the displacement of the observa-
tion point from the reference particle.

The next step is to reverse the order of v and ξ integrals.
Suppose that H(Y ) = 0, |Y | > h/2, implying that χ(ξ) =
0, |ξ| > h. Then (17) takes the form

1
4πεo

[ ∫ u−ε(x,h)

−∞
dv

∫ h

−h

dξ +
∫ u−ε(x,0)

u−ε(x,h)

dv

∫ b

−b

dξ

]

· χ(ξ)√
b2 − ξ2

ρ̄(R, u, v, ξ)) .

(21)

By an approximation based on Assumption A, derived from
Taylor expansions, we can replace the small argument ξ of
ρ̄ by h in the first integral and by 0 in the second. At a
consistent level of approximation, the argument xc of b can
be replaced by x when v ≥ u − ε(x, h). This means that
the first integral has b > h and the second 0 ≤ b ≤ h. Now
the ξ-integral is the known function

Φ(b, h) =
∫ ξ̄

−ξ̄

χ(ξ)dξ√
b2 − ξ2

, ξ̄ =

{
h , b > h
b . 0 ≤ b ≤ h

(22)
In the square step model with H(Y ) = const., |Y | < h/2,
we have

b > h :

Φ(b, h) =
2
h

[
sin−1 h

b
+

1
h

([b2 − h2]1/2 − b)
]

,

0 ≤ b ≤ h :

Φ(b, h) =
1
h

[
π − 2b

h

]
. (23)

Here Φ and ∂Φ/∂b are continuous at b = h, as is true in
more general models of H .

After analogous reductions for A we are prepared to
compute E = −∇φ − ∂A/∂t and BY = (∇ × A)Y .
It is useful to change the variable of integration from v to
w = u − v in the integral for A, before taking ∂/∂t. Re-
sults are stated in terms of the following definitions, where
f can be either ρ or j. For v < u − ε(x, h) (b > h),

f±(R, u, v) = f(zc −
√

b2 − h2, βv)

±f(zc +
√

b2 − h2, βv). (24)

For u − ε(x, h) ≤ v ≤ u − |x| (0 ≤ b ≤ h),

f+(R, u, v) = 2f(zc, βv) , f−(R, u, v) = 0 . (25)

In summary the fields near the reference particle are

E(R, u) =
Zo

4π

∫ u−|x|

−∞
dv

[
xc

b

∂Φ
∂b

(cρ+n + x′
cj+)

−ΦD1

[
cρ+t + z′cj+ +

xc√
b2 − h2

(cρ−n + x′
cj−)

]
−ΦβD2j+

]
+

Zoc

2π

x

|x|n(βu)Φ(0, h)ρ(zc, βv)
∣∣
u−|x|,

(26)

BY (R, u) =
Zo

4πc

∫ u−|x|

−∞
dv

[
− xc

b

∂Φ
∂b

n × j+

+ΦD1

[
t × j+ +

xc√
b2 − h2

n× j−
]]

Y

− Zo

2πc

x

|x|Φ(0, h)(n(βu) × j(zc, βv))Y

∣∣
u−|x| . (27)

Under the integrals t and n are evaluated at βv, and prime
(′) means ∂/∂v, from which it follows that

x′
c = βκ(βv)zc , z′c = −β(1 + κ(βv)xc) . (28)

The other components of the integrand are defined in
(10,24,25,16,18,22). Transverse fields blow up as 1/h in
the limit of small h, whereas the longitudinal electric field
diverges as ln(h), a typical behavior for the space charge
effect. In the transverse Lorentz force the final terms in
(26) and (27) combine to give a term O(1/(hγ 2)). Also,
there is a cancelation producing 1/γ 2 in the tangential part
of D1(cρ+t + z′cj+), which identifies a space charge ef-
fect. For non-zero h the integrals are free of singularities
and can be evaluated numerically, but care is required in
handling a sharp peak of the integrand near the upper limit.
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