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Abstract 
In earlier work related to the NSLS-II project we have 

outlined a control theory approach for the dynamic 
aperture problem. In particular, an algorithm for the joint 
optimization of the Lie generator and the working point 
for the Poincarè map. This time we report on how the Lie 
generator provides guidelines on acceptable magnitudes 
for e.g. the intrinsic nonlinear effects from insertion 
devices, and the nonlinear pseudo-invariant from the map 
normal form can be used to optimize the dynamic 
aperture.  We also show how a polymorphic beam line 
class can be used to study the parameter dependence and 
rank conditions for control of optics and dynamic 
aperture.  

INTRODUCTION 
In earlier work [1] we have shown that joint 

optimization of the Lie generator of the Poincarè map and 
the working point is an effective approach to control the 
dynamic aperture (DA).  The method is non-perturbative1 
in the sense that there is no need to bring the map into 
normal form, i.e., to integrate the equations of motion by 
perturbation theory.  In particular, the corresponding 
Taylor map can be transformed into the factored form [2] 

RAAMM :3::4:1
linear

:3::4: hhhh eeee KK −==  

If the Lie generators are evaluated for a suitable 
amplitude, there is essentially only one free parameter, 
i.e., the weight on the generators driving resonances vs. 
tune shifts.  In fact, it turns out that reasonable solutions 
for different lattices can be obtained without adjusting 
individual weights. 

NONLINEAR DYNAMICS GUIDELINES: 
THE LIE GENERATOR 

Having established a baseline lattice with adequate DA, 
the residual Lie generator from the sextupole scheme can 
then be used to provide insight into and guidelines for 
acceptable magnitudes of nonlinear terms from other 
sources.  For example, to optimize the parameter choice 
for Insertion Devices (IDs), see Table 1 [3].  In particular, 
to view the IDs as an integral part of the system; rather 
than a (nonlinear) perturbation of the (linear) optics. 
                                                 
1
  The Taylor map has a finite radius of convergence. 

 
Table 1: Lie Generators from the Sextupole Scheme and a 
Single Insertion Device for Various Types 
 

Lie 
Generator 

Effect 
Sextupole 
Scheme 

DW CPMU SCU 

h00220 ∂νy /∂Jy 606.9 1,089.2 1,102.6 1,259.6 
h00220 2νy 76.2 52.3 6.9 39.5 
h00400 4νy 46.6 58.7 13.7 11.3 

CELL TUNE VS. RESONANCES: 
THE NONLINEAR INVARIANT 

Our earlier approach for the DA aperture optimization 
did not explicitly take into account the cell tune’s 
closeness to the betatron resonances driven by the Lie 
generator.  Therefore, we have evaluated how minimizing 
the coefficients for the nonlinear pseudo-invariant 

( ) ( ) ( ) cst., :,: == JkeJK Jg φφ  

 where [ ]φ,J  are the action-angle variables for the linear 

optics, ( ):,: φJg  a canonical transformation to Floquet 

space, and ( )Jk  a nonlinear rotation, compares in terms 

of the resulting DA.  It is obtained from the map normal 
form [4] 

( ) ( ) ( ) AARAAM :,::::,:1::::1 34 φφ JgJkJghh eeeee −−− →= K
In other words, a perturbative approach; justified by the 
fact that the objective is to maximize the phase space 
region around the fixed point with regular motion. 

In particular, the terms are of the form 
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where [ ]yx nn ,  are integers, [ ]ba,  rational numbers, and 

[ ]yx νν ,  the cell tune.  Note the  resonance denominator.  

Intuitively, we expect the resulting dynamics to be more 
regular since reducing the nonlinear part of the pseudo-
invariant brings it closer to the linear invariant (action).  
To summarize, instead of controlling the dynamics by 
reducing the nonlinear terms in the equations of motion 
(Lie generator), we are now reducing the nonlinear terms 
in the corresponding (perturbative) solutions. 

To evaluate the relevance of the resulting pseudo-
invariant, we first compute it as a function of [ ]φ,J  to 5th 

order2 for a sample lattice and then evaluate it on a turn-
by-turn basis for different betatron amplitudes by 
tracking, see Figs. 1-3.  We conclude that it captures the 
                                                 
2
 By truncated power series algebra (TPSA) [5] and a polymorphic beam 

line class [6]. 
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dynamics quite well up to an amplitude of ~10mm and 
starts to break down at ~15mm, i.e., at about half the DA. 

 
Figure 1: Variation of the Horizontal Linear Action with 
Betatron Phase (on a turn-by-turn basis). 

 
Figure 2: Variation of the Vertical Linear Action with 
Betatron Phase (on a turn-by-turn basis). 

 
Figure 3: Variation of the 5th Order Pseudo-Invariant on a 
Turn-by-Turn Basis. 

 
Figure 4: Tune Scan of Optimized DA (normalized with

yx ββ , using Lie Generator). 

 
Figure 5: Tune Scan of Optimized DA (normalized with

yx ββ , using pseudo-invariant). 

 
Figure 6: Tune Scan of Resulting DA for a Full Lattice 

with Magnet Misalignments (normalized with yx ββ ). 
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The basic algorithm for the DA-optimization is as 
before3 and the result is shown in Figs. 4-5.  Indeed, the 

cst.DA yx =ββ  surfaces are broadened in the latter. 

The DA is shown in Figure 7.  Moreover, the choice of 
working point can then refined by re-computing the DA 
(by tracking) for a full lattice with e.g. magnet 
misalignment errors for the previously determined 
quadrupole/sextupole tunes, see Figure 6. 
 

 
Figure 7: Dynamic Aperture for %3 and  0 ±=δ . 

PARAMETER DEPENDANCE: 
RANK CONDITIONS 

The numerical/analytical model/framework, which is a 
prerequisite for this work, also enables one to compute the 
parameter dependence of any global property of the 
lattice, e.g. the multipole strength.  In fact, the DA 
optimization algorithm uses this to compute the Jacobian 
for the nonlinear systems that must be solved to: 

• adjust the cell tune in a controlled manner 
(quadrupoles), 

• and to minimize the Lie generator4 or pseudo-
invariant (sextupoles) 

 => straightforward to implement e.g. a gradient search. 
Another use of the Jacobian is to check the rank 

conditions of the governing equations for the control of a 
(linearized) realistic system; by singular value 
decomposition. 

For example, even though the CDR lattice [3] had 
quadruplets in the short and long straight sections, we 
experienced convergence issues with the (local) control of 
the optics perturbations from the IDs [9].  In theory, this is 
modeled by two decoupled 44 × systems.  Intuitively, we 
concluded that this originated from degeneracy.  Indeed, 
removing one of the quadrupoles in each quadruplet from 
                                                 
3
 Note, the use of an artificial thin phase-space rotation is to simplistic 

since it ignores the change of optics for the sextupoles associated with a 
realistic cell tune adjustment.  In fact, this is precisely what led us to 
implement the tune scan approach outlined in [7].  
4
 This is also how we diagnosed that the rank of the 9×9 sextupole 

response matrix for the first order terms in the SLS sextupole scheme is 
only 8, due to optics [8].   In particular, control of h20001 requires 
adjusting the phase advance over lattice sections. 

the algorithm led to convergence.  Later, this was 
confirmed by rank analysis of the Jacobian for general 
optics tuning with the short and long matching sections 
(10 constraints) for a modified CDR lattice, i.e., with 
triplets in the short straights, see Table 2.  The approach 
can be generalized to analyze the entire super cell. 
 

Table 2: Rank Conditions for Control of the Impact of IDs 
on the Linear Optics. 

 
  Gradients 

  Quadruplets 
Triplets in 

Short Straights 
Singular 
Values 

10×8 10×7 

  3.5E+00 3.3E+00 
  2.1E+00 1.9E+00 
  1.3E+00 1.0E+00 
  4.0E-02 3.5E-02 
  1.1E-02 5.9E-03 
  2.7E-04 3.6E-04 
  3.1E-05 3.4E-05 
  3.8E-06   

 

CONCLUSION 
We have outlined how, after having established a 

baseline lattice with adequate DA, the Lie generator can 
be used to obtain insight into and provide guidelines for 
the acceptable magnitude of nonlinear terms from other 
sources e.g. insertion devices.  We have also evaluated 
how well the nonlinear pseudo-invariant captures the 
dynamics and how to use it to control the dynamic 
aperture.  Finally, we have shown how a polymorphic 
beam line class can be used to study the parameter 
dependence and rank conditions of the governing 
equations for control of optics and dynamic aperture. 
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