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Abstract. 
We have performed experiments and modeling to 

evaluate a proposed merging beamlet approach for use in 
a compact high-brightness Heavy Ion Fusion injector. We 
used an rf plasma source to produce the initial beamlets. 
An extraction current density of 100 mA/cm2 was 
achieved, and the thermal temperature of the ions was 
below 1 eV. An array of converging beamlets was used to 
produce a beam with the envelope radius, convergence, 
and ellipticity matched to an electrostatic quadrupole 
channel. Experimental results were in good quantitative 
agreement with computer simulations and have 
demonstrated the feasibility of this concept. The size of a 
driver-scale injector system using this approach will be 
several times smaller than one designed using traditional 
single large-aperture beams. The success of this 
experiment has possible significant economical and 
technical impacts on the architecture of HIF drivers. 

INTRODUCTION 
The ion source envisioned will start with 200 5-mA 

beamlets across a 100-kV gap. The beamlets will be 
focused by Einzel Lens while their energy is increased to 
about 1.2 MeV. The beamlets are then merged to produce 
a 1-A beam with a normalized 4*rms emittance of about 1 
π-mm-mrad at 1.6 MeV1. For the envisioned source we 
need  low-temperature ions that can provide ion emission 
densities of ~100 mA/cm2 of Ar+, and an 
accelerator/focusing system where the maximum 
electrical fields are ~100 kV/cm. The main beam transport 
issues involved in the multi-beamlet approach are 
emittance growth and envelope matching in the merging 
process. 

We first performed an experiment with an rf plasma 
source to create the beamlets. Section 2 will briefly 
describe the results. Next, to accelerate/focus the beamlets 
we used an Einzel Lens Array. To ensure that we can hold 
the design voltage gradients in the source environment we 
performed the Full Gradient Experiments described in 
Section 3. Finally, the scaled merging experiments 
described in Section 4 was performed. Our goal was to 
confirm the emittance growth and to demonstrate the 
technical feasibility of building a driver-scale HIF 
injector.  
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INDIVIDUAL BEAMLETS 
We used an rf plasma source to produce our argon ion 

beamlets. The plasma chamber had a 26-cm inner 
diameter with multicusp permanent magnets to confine 
plasma. RF power (13.6 MHz) was applied to the source 
via a 2-turn, 11-cm diameter porcelain coated antenna 
inside the chamber. The RF power was typically applied 
for about 400 μs while the accelerating gap voltage was 
typically applied for 20 μs. We have shown that we can 
extract 100 mA/cm2 from the chamber. Optimum 
performance at 80 kV was achieved with ~2 mTorr gas in 
the plasma chamber using 22 kW of rf drive power. The 
lowest emittance (best optics) was achieved when the 
beamlet current was slightly below the peak current value. 
Current density was found to increase with RF power as 
long as there was sufficient extraction voltage. At 80 kV, 
we have reached our goal of producing 100 mA/cm2 of 
Ar+ ions (i.e. 4.9 mA per beamlet). For operation with 10 
kW of drive power we estimated that less than 5% of the 
extracted ions were in the Ar++ state. The thermal 
temperature of the ions was below 1 eV. Additional 
details about the rf plasma source have been published 2,3. 

FULL GRADIENT EXPERIMENTS  
In order to prevent space charge blow-up, the beamlets 

must be kept separated and focused during pre-
acceleration.  The pre-accelerator made use of Einzel 
Lens focusing, and a high voltage gradient, to handle the 
high current density beamlets. In this experiment, 61 
beamlets were extracted from an RF-driven Ar+ plasma 
source with a current density up to 100 mA/cm2.  

The Full Gradient Experiment was designed to test the 
electrical gradient limit in the working environment of the 
rf plasma source. The dimensions and electric fields are 
typical of what we would like to use in a driver scale 
injector. Since we were limited to about 400-kV of pulsed 
voltage, only the first 5 gaps of a full system could be 
tested (See Figure 1). In this experiment, the beam current 
is “full-scale”. 

For these experiments we tested a 61-beamlet 
extraction array using a series of Einzel lens. To reduce 
the fabrication cost we did not use curved plates. The 
highest vacuum electric field gradient occurred between 
the 2nd and 3rd plates, and was 100 kV/cm on axis for a 1.2 
cm gap. Fields at the edge of the holes were expected to 
be about 120 kV/cm for the experiment. The  source 
apertures were 2.2 mm in diameter while all the other 
electrodes had 4.0 mm diameter holes. The current per 
beamlet was 3.8 mA,  and the  extraction current density 
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was 100 mA/cm2. There were 61 beamlets for a total 
current of  232 mA.  

One of our goals was to test the high gradient insulators 
(HGI) which were used to assemble the electrode plates. 
When tested individually, each would hold 80 kV DC 
without beam. The insulators were either 4.27 cm or 2.13 
cm in length. A conservative working voltage is about 30 
kV/cm for a 20-μsec pulse in the gap environment. 
Achieving these gradients required conditioning of the 
surfaces. 

 

 
Figure 1: Side view of the electrodes used in the Full 
Gradient Experiment. Electric Field between the 2nd and 
3rd plate was 100 kV/cm. 

Figure 2 shows the measured beam images at the exit of 
the bottom plate and the corresponding simulation.  Here 
the beamlets have not been fully merged, therefore the 
image shows the current density uniformity across the 
array.  

 
Computer simulation ……… 

 
X (meters) ………. 

 ……… 
Figure 2:  Simulation and measured beamlets for the Full 
Gradient Experiment at the exit of the Einzel Lens Array. 
The arrows are 16 cm long.  
 

 In trying to reach 400 kV with this module, we 
encountered a voltage breakdown problem at the last gap.  
Since, this gap has a lower design voltage gradient than 

the second gap which held voltage, we concluded that the 
problem was most likely due to a defective insulator.  By 
shorting the final gap we were able to reach full current 
operation.  

MERGING BEAMLETS 
The main physics issues for merging beamlets are 

envelope matching and emittance growth in the merging 
process. For a proof-of-principle test of the merging 
process we have designed an experiment at full 
dimensions, but which will operate at one-quarter the 
voltage of a drive scaled injector. According to the Child-
Langmuir electrostatic scaling law (I ~ V3/2), the beam 
current will be reduced to 1/8. Since all the voltages in 
this electrostatic system are reduced by the same factor, 
and the current density is scaled according to the “3/2” 
space charge limited condition, the beam optics of 
merging remains unchanged. The design of the system 
used the WARP-3D computer code4.  

Since the front end of an HIF induction linac uses 
electrostatic quadrupoles (ESQ) for beam transport, it is 
desirable to produce an elliptically shaped beam spot at 
the ESQ channel entrance to eliminate the conventional 
ESQ matching section. There are two ways to do this 
matching: (1) start with a circular array of beamlets and 
focus the x-z and y-z planes differently (astigmatic), or 
(2) start with an elliptical array of beamlets and focus the 
transverse planes equally. Although the first way was 
preferred because having the same initial x-x’ and y-y’ 
emittance could reach equilibrium quicker, we found that 
electrodes curved differently in the two planes were too 
expensive to make so we used the second method instead.  

 

 
Figure 3: Simulated particle trajectories in x-z space. The 
quadrupole fields in the experiment were different than 
what was used to generate the figure.  

The emittance growth (normalized to a constant beam 
current) is minimized when the beamlet energy is high (at 
the time of merging), the number of beamlets is large, and 
the beamlets are close to each others. The final emittance  
depends on the initial beamlet convergent angle and 
weakly on the ion temperature1. Figure 3 shows the 
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Figure 4: Layout of the Merging Experiment.

  
simulated evolution of  beamlets in x-z configuration 
space. The x and y rms emittance was found to initially 
rise to different values because of the elliptical shape but 
later came to an equilibrium value (average between x and 
y emittance) in about 10 m distance.  

Experimental Hardware 
A layout of the experimental hardware is shown in 

Figure 4. In this experiment 119 multi-beamlet were 
merged into a beam. On the left was a RF-driven 
multicusp ion source.  Next was the Einzel Lens Array 
that had 12 electrodes, and was glued together using high 
gradient insulators. These electrodes were curved with a 
common focal point just before the first ESQ entrance. 
Voltages were tapped from the grading rings of the 
voltage-grating column that surrounded the hardware. 
Figure 5 shows the lens assembly mounted in the column 
and Figure 6 shows a typical curved plate in the lens 
assembly with 119 apertures. Because the voltages 
between plates was reduced by a factor of four, we did not 
need reentrant cups, as in the Full-Gradient Experiment. 
We used HGI directly between the plates to hold the 
assemble together and provide alignment 

 
Figure 5: Einzel Lens Assembly for the Merging 
Experiment installed in the top of the column (without the 
field shield installed). 

 
 
Figure 6: One of the lens plates with 119 beamlet holes.  
The radius of curvature is about 60 cm. 

Experimental Results from the Merging 
Beamlets Experiment 

We measured the beam’s emittance after the beamlets 
were merged and passed through the electrostatic 
quadrupoles (ESQ). Our goal was to confirm the 
emittance growth and compare the current profiles with 
simulation. Figure 7 shows a typical x-x’ phase-space 
diagram taken at 10 cm after the exit. The scan was done 
using an “optical scanner” that had a front slit with a 
scintillator imager at the back. Although the beamlets are 
merged together into a large beam, the fine features in the 
diagram reveal the reminiscence of the original beamlets. 
Figure 8 shows an emittance diagram from simulation. 
Data from the optical and from the conventional double-
slit scanners were both agreeing with that from the 
simulation. We also had good agreement between the 
double-slit scanner y-y’ emittance data and the 
simulation, but not the optical scanner in this direction 
which had poor resolution. Signal noise made it difficult 
to find the edge of the phase space in the experiments. 
The optical emittance scans used a 90% amplitude cutoff. 
For the slit scanner data, we plotted the emittance vs. the 
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cutoff level, fit a line to the data in the 70% to 90% cutoff 
region, then reported the line’s intercept at the 100% 
level. The simulation points are the 4*rms emittance value 
taken for 90% of the ions 
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Figure 7: Optical measurement of the x-x’ phase space at 
10 cm below the last quadrupole.  

 
Figure 8: Simulation  of the x-x’ phase space at 10 cm 
below the last quadrupole. Horizontal scale is in meters, 
and the vertical scale is in radians. 
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Figure 9: Comparison of the measured and simulated 
unnormalized x emittances. 

The unnormalized emittance as a function of beam 
voltage is plotted in Figure 9. The unnormalized 
emittance does not depend on the injector voltage if the 
perveance is held constant and the focusing fields are 
scaled to the beam voltage. The main contribution to the 
phase area was the “trapped” area when the beamlets were 
merged.  

Figure 10 shows the beam current into the Faraday Cup 
as a function of the beam voltage. The simulation beam 
current assumes a flat emitting meniscus. Higher current 
can be obtained at the expense of inferior beam optics if 
the ion-emitting surface is allowed to bulge into the 
extraction gap by overdriving the RF plasma.  Near 400 
kV we believe that we were losing current from gas 
collision near the Faraday Cup. Obtaining good transport 
required that we operated near the correct perveance. At 
400 kV we measured 70 mA into the Faraday Cup. 
Scaling this result up to the full voltage of 1.6 MV for a 
driver-scale injector, the full beam current would be 8 x 
70 mA = 560 mA. 
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Figure 10: Beam current into the Faraday Cup located 
after the ESQs. 
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Figure 11:  Profile of the merged beam after the first ESQ 
and 10 cm after the third ESQ. The vertical edge width is 
about 4 cm for both sets. 
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Using alumina scintillators, we produced optical images 

of the beam’s cross-section at two different locations: first 
at the beginning of the second ESQ, and then at 10 cm 
after the exit of the ESQ channel. These images are shown 
in Figure 11. The first image was taken without applying 
ESQ voltages in order to observe the beam condition right 
after merging but before ESQ focusing. The second image 
showed the beam condition after going through the ESQ 
transport channel. These data confirmed that the 119 
beamlets had merged to form an elliptically-shaped beam. 
Fine structures in the current density were caused by the 
original discrete beamlets and should dissipate to form a 
homogenously uniform beam as the beam propagates 
further downstream.    

SUMMARY 
In an 80-kV 20-microsecond experiment, an rf plasma 

source has produced up to 5 mA of Ar+ in a single 
beamlet. An extraction current density of 100 mA/cm2 
was achieved, and the thermal temperature of the ions was 
below 1 eV. We have tested at full voltage gradient the 
first 4 gaps of an injector design. Einzel Lens were used 
to focus the beamlets while reducing the beamlet-to-
beamlet space charge interaction. We were able to reach 
greater than 100 kV/cm in the first four gaps. We also 
performed experiments on a converging 119 multi-
beamlet source. Although the source has the same optics 

as a full 1.6 MV injector system, these test were carried 
out at 400 kV due to the test stand HV limit.  
Experimental results were in good quantitative agreement 
with simulation and have demonstrated the feasibility of 
this concept.  
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