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Abstract  
The emergence of Field Programmable Gate Arrays 

(FPGAs) with embedded processors and significant 
progress in their development tools have contributed to 
the realization of system-on-a-chip networked front-end 
systems [1]. Embedded processors are capable of running 
full-fledged Real-Time Operating Systems (RTOSs) and 
serving channels via Ethernet while high speed hardware 
functions, such as digital signal processing and high 
performance interfaces, run simultaneously in the FPGA 
logic [2].  

Despite significant advantages of the system-on-a-chip 
implementation, engineers have shied away from 
designing such systems due to the perceived daunting task 
of integrating software to run a RTOS with custom 
hardware. However, advances in embedded development 
tools considerably reduce the effort required for 
software/hardware integration. 

This paper will describe the implementation and 
integration of software and hardware in an FPGA 
embedded processor system as illustrated by the design of 
a new control system module for the Advanced Light 
Source (ALS) at Lawrence Berkeley National Lab 
(LBNL). 

INTRODUCTION 
One of the greatest difficulties faced by the accelerator 

control system (CS) is in devising a scheme for 
interfacing the CS to the various types of accelerator 
instrumentation. The natural tendency is to mandate a 
“supported” interface, compelling the instrumentation 
engineer to create a compatible design that may not be 
optimized for the instrumentation task. In addition, 
organizational boundaries often exist between the control 
system group and instrumentation engineers (who may be 
outside vendors) that increase the chance of hardware 
compatibility problems during commissioning. There is 
general agreement, however, that the instrumentation and 
the attached CS element should be co-located. 

One of the most common interface strategies is to use a 
bus-based system (e.g. VME, PCI). Typically a crate is 
deployed containing a single-board computer (SBC) card 
with an Ethernet interface to the control system, and 
interface cards for analog and digital I/O. More integrated 
designs may include a custom motherboard with a 
processor module and I/O modules connected via an 
onboard bus, or even designing the processor and I/O 
chips onto a single board. However, as the performance 

demands on instrumentation interfaces increase, the bus-
based interface becomes a bottleneck in the data transfer 
chain from instruments to the CS. With the evolution of 
FPGAs with embedded processors, the combination of 
high speed converter interfaces, high speed data 
processing, and control system interfaces can now be 
realized in a single chip solution.  

As recently as 5 years ago, the embedded design tools 
for implementing a processor-based FPGA design were 
quite primitive and difficult to use. The learning curve for 
embedded design tools and the lack of practical examples 
deterred engineers from including this powerful 
technology in their designs. The progression of these 
tools, example designs, and vendor support has led to the 
development of highly integrated design processes, 
including pushbutton board support package (BSP) 
generation for several RTOSs, extensive libraries of 
standard peripheral controllers (i.e. Ethernet, RS-232, 
CoreConnect™ buses, serial interfaces, etc.), and 
templates for designing bus compatible custom peripheral 
controllers (cores).  

The ALS Control Systems and Instrumentation groups 
collaborated to create the ALS Mini IOC [3] based on the 
FPGA embedded processor technology, including an 
EPICS [4] control system interface integrated with 
magnet power supply control hardware.   

ENGINEERING COLLABORATION 
From previous experience designing the PEP-II 

Transverse Feedback Electronics [5], it was clear at the 
outset of the Mini IOC design that the ability of the 
control systems group and the instrumentation group to 
collaborate effectively would be critical to the success of 
this project. For this to work, tasks had to be divided 
between hardware and software engineers efficiently. 
Figure 1 shows the final development flow for the Mini 
IOC. In this figure, hardware and firmware tasks are 
shown in orange, specification documentation in yellow, 
and software development and configuration in green. 
When used, development tools are shown in parentheses. 
The arrows indicate dependencies of tasks on the 
completion of other tasks. The starred tasks are not 
necessarily required depending on available system 
memory, and will be discussed further in the 
“Bootloading Control System Software” subsection of 
this paper. 

Design Process 
The design process began with the board level design, 

factoring in requirements of the control system interface 
specification. For the Mini IOC, this task included 
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selecting the FPGA (a Xilinx® Virtex™-4 with embedded 
PowerPC®), I/O interfaces, and other physical hardware 
[3]. Custom cores had to be designed in the FPGA 
firmware to control the selected hardware, and a 
specification was written on how to control them from the 
processor. The custom cores and standard cores were then 
integrated into the top level design and connected to 
internal buses to make them accessible to the processor. 
An initial build of the RTOS kernel (VxWorks) for the 
customized hardware provided a starting point for the 
software development effort.  
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 Figure 1: Division of Mini IOC design tasks between 
hardware and software engineers. 

While software engineering worked towards a final 
VxWorks kernel and low level drivers, hardware 
engineering developed bootloader software that would 
start on FPGA power-up. The tasks of designing custom 
peripherals through writing low level drivers for them was 
iterated as each custom peripheral was developed so that 
the software engineering development could begin before 
the firmware design was complete. Once all the low level 
drivers were complete, they were integrated into the 
EPICS control system interface. 

DESIGN STRATEGY 
A significant goal of this project was to create a CS 

friendly instrumentation platform that could be leveraged 
for future designs [6]. Rather than standardizing the 
physical hardware, we created a virtual base design that 
consists of a standard control system interface and a 
subset of standard peripherals (i.e. Ethernet, RS-232, 
memory controllers) with a pre-defined method for 
controlling custom peripherals. This virtual design can be 
merged with a customized hardware/logic design that is 
optimized for specific instrumentation tasks. Figure 2 
illustrates the firmware design of the Mini IOC. Cores 

shown in yellow were provided by Xilinx®, blue cores 
were designed by LBNL using Xilinx bus interface 
templates.  
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Figure 2: ALS Mini IOC FPGA firmware block diagram. 

In an embedded processor based design, one of the 
challenges is to merge control system requirements and 
instrumentation requirements efficiently into an FPGA 
with shared resources. For the Mini IOC, this meant 
merging an EPICS control system interface with a booster 
ramp controller including four channels each executing a 
ramp table of 10,000 16-bit points in 100us intervals [3]. 

Embedded Resource Management 
Since hardware and software must coexist in the FPGA, 

careful attention must be paid to resource allocation and 
the interconnection of the various system components to 
avoid collisions. However, the flexibility of embedded 
systems allows designers to consider multiple 
implementations of some system functions, enabling 
effective resource management at design time and into the 
future. 

In the case of the Mini IOC, one resource allocation 
that underwent changes during the design process was the 
storage of the booster ramp tables. The preliminary design 
specification required two ramp channels, each with a 
10,000 point ramp table of 16-bit values, which required 
40kB of memory. Since the selected FPGA contains about 
70kB of block RAM, this memory was initially selected 
for ramp table storage. This left nearly half (about 30kB) 
of the block RAM available for bootloading software and 
other logic functions. Moreover, block RAM is a flexible 
resource and could be easily incorporated into the booster 
ramp controller logic. 

As design requirements were finalized, this 
specification changed to four 10,000 point ramp channels 
(for future expansion), with the ability to download a new 
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ramp table to each channel before the next ramp cycle 
(once per second, maximum). To accommodate the ramp 
table download, we chose to store a secondary ramp table 
for each channel, doubling the amount of ramp table data. 
With the final specifications, the Mini IOC now needed to 
store 160kB of ramp table data—four times the 
preliminary requirement, and more than could be stored in 
the FPGA block RAM. 

The large off-chip DDR SDRAM (64MB) had plenty of 
memory available to store both control system software 
and ramp tables. The drawback was that the booster ramp 
controller would have to contend with other activity on 
the bus and compete with the processor for access to the 
SDRAM. Testing was done to measure the impact of this 
additional load on the bus bandwidth and processor 
performance, and it was determined that the impact was 
minimal, since the transfer was only 8 bytes of ramp table 
data every 100 us. As a result, we were able to 
accommodate changes in the specification without 
modifying the physical hardware or the control system 
interface. 

SOFTWARE DEVELOPMENT 
The main challenge in software development is 

generating a custom BSP and building a properly 
configured RTOS kernel that runs on the embedded 
platform. The Xilinx® Embedded Development Kit 
(EDK) supports automatic BSP generation for VxWorks, 
and a Xilinx® tutorial [7] describes how to configure 
VxWorks to run on the embedded PowerPC®, which 
allowed us to get VxWorks up and running quickly on the 
Mini IOC. Some additional kernel configuration was 
required to support EPICS on VxWorks. A simple sockets 
interface was used to download ramp table data. 

 
Figure 3: ALS Mini IOC Software Bootloading 
Components. 

Bootloading Control System Software 
Due to limitations of the memory available in the 

system, the Mini IOC requires a complex multi-step boot 
process to configure itself for Ethernet communication 

and to start EPICS. Figure 3 shows the connection of 
components in the boot sequence.  

After power-up, the FPGA loads it’s configuration from 
the Platform Flash, which includes the EDK bootloader, 
and begins executing it. The bootloader copies the 
VxWorks bootrom from Flash to DDR SDRAM and 
begins execution. The VxWorks bootrom reads unique 
Ethernet configuration parameters, such as the MAC 
address, from the EEPROM, and configures the Ethernet 
interface. The bootrom then obtains additional IOC-
specific parameters from the BOOTP server based on its 
MAC address.  This extra step allows us to swap Mini 
IOCs for servicing without having to reconfigure their 
Flash by simply updating the central BOOTP database.  
The bootrom then downloads the VxWorks kernel 
(common to all Mini IOCs) from the remote file server to 
SDRAM and starts VxWorks. VxWorks executes a 
startup script to download EPICS code, and generic and 
IOC-specific database settings from the remote file server.  
EPICS is then started to perform the IOC’s control 
functions. 

CONCLUSION 
FPGAs with embedded processors allow designers to 

integrate CS and instrumentation requirements into a 
single chip using a virtual design template. Employing 
this template as a standard for accelerator CS 
instrumentation interfaces allows greater flexibility in 
hardware designs. Accelerator CS and Instrumentation 
groups must collaborate on the embedded design for this 
strategy to work effectively. A benefit of the initial 
collaboration is that the experience gained by both groups 
can be leveraged towards future designs. 
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