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Abstract 
Field Programmable Gate Arrays (FPGAs) offer a 

powerful alternative to Application Specific Integrated 
Circuits (ASIC) or general purpose processors in 
accelerator control applications. Software development 
for these devices can be awkward and time consuming, 
however, when using low level hardware design 
languages. To facilitate the use of FPGAs in control 
systems we are developing a library of software tools 
based on ImpulseC, a high level subset of the C language 
specifically designed for FPGA programming. 
Development and testing of the software will be 
performed on a Xilinx Virtex-4 FPGA demo board. Here 
we present initial results of algorithms of relevance to 
controls applications implemented in Impulse C. 

INTRODUCTION 
Field Programmable Gate Arrays (FPGAs) are integrated 
circuits consisting of programmable logic elements and 
programmable interconnects between these elements. The 
high gate density available with present technology 
provides significant computational power to these units. 
FPGAs have become increasingly important components 
in distributed control systems for particle accelerators. 
This is particularly true for applications providing local 
intelligence and control functions such as implementing 
PID (Proportional/Integral/Derivative) control algorithms 
for control of an accelerator subsystem [1],  or providing 
an interface from a PC to a chain of crates in a legacy 
CAMAC system [2]. FPGAs are also rapidly replacing 
Application Specific Integrated Circuits (ASICs) because 
of the reduced development cost of FPGA applications 
and the ability to revise and upgrade the programming of 
the system “on the fly”. The downside of the improved 
development cycle and versatility in hardware is the 
difficulty in software development. Application 
development in hardware description languages (HDLs) 
like VHDL or Verilog require the user to become 
proficient in new and difficult languages. GUI-based 
approaches in which the programmer specifies the 
program in terms of a functional block diagram work well 
for relatively small applications but become unwieldy to 
use for complex programs. Here we present some results 
of investigations using high-level languages for FPGA 
algorithm development.  

IMPULSE C 
While there is a number of tools currently available for 

high-level FPGA development, we investigate the 
Impulse C [1,2] language and the CoDeveloper 
programming environment. Among the reasons for 
choosing Impulse C is the large coverage of the ANSI C 
standard, as well as the broad support for various 
hardware platforms.  

Impulse C allows a software developer with knowledge 
of C programming to describe mixed software/hardware 
systems. In this environment, hardware/software 
partitioning is defined using a small set of C-compliant 
programming extensions (in the form of a set of library 
functions) for expressing parallelism and process-to-
process communications. An Impulse C application 
programming interface (API) provides communication 
methods including data streaming, shared memory and 
message passing models of communication. Impulse C 
supports different FPGA targets by automatically 
generating PC-to-host communications and allowing 
software processes running on the host computer to 
communicate directly and efficiently with the compiler-
generated FPGA hardware. The software developer, using 
standard C profilers and interactive optimization tools, 
can decide if a process should be located on the host CPU 
or on the FPGA and partition the application accordingly.  

The Impulse C compiler translates the software 
processes into native code for the host CPU, while the 
hardware processes are compiled to produce FPGA-ready 
hardware definitions. Using a sophisticated platform 
support package mechanism, code for a broad variety of 
platforms can be generated, ranging from FPGA 
accelerated supercomputers like the Cray XD1, to 
PCMCIA FPGA cards like the Pico Computing E-14 [5].  

For completeness, we mention a common value-added 
feature of FPGAs, the concept of IP (intellectual property) 
cores. This refers to third party software available on the 
FPGA to implement a particular functionality. An IP core 
is referred to as soft (implemented as a configuration bit 
stream loaded at initialization) or hard (actually burned 
into memory on the FPGA). Some of the capabilities 
provided by IP cores are floating point arithmetic, 
ethernet, fast Fourier transform, and even general purpose 
microprocessors. Impulse C provides full access to 
features provided by IP cores. 

FIRST EXPERIMENT: BOX-CAR FILTER 
Listing 1 shows the source code for the core of the 

hardware process for the box car filter. This process reads 
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new values coming on the input stream, adds the value to 
the running total and subtracts the last value in the 
window from the running total. It then adds the new value 
at the position of the last value in the window and 
advances the position pointer in the ring buffer.  Finally, 
the actual average is computed by dividing the running 
sum by the window length. This value is then shipped 
back to the host CPU.  

 
 
while(co_stream_read(input_stream,&c, 

sizeof(int32))==co_err_none)  
{ 
     avg_new = avg + c - buf[pos];            
     buf[pos] = c;       
     pos_new = pos + 1;      
   
     if(pos_new == BUFLEN) pos_new = 0; 
     avg_frac = avg_new / BUFLEN; 

co_stream_write(output_stream, 
&avg_frac,sizeof(int32));                  

     avg = avg_new; 
     pos = pos_new; 
} 
Listing 1: Core of the hardware process for the boxcar 
filter. This code is translated into VHDL and can then be 
synthesized into an FPGA configuration file (bitstream). 
 

In order to simulate a data source for this filter, we 
wrote a producer process which generates data sets on the 
host CPU and sends them to the FPGA.  
 

TIMING TESTS  
Once the VHDL code is generated, Impulse C provides 

tools that allow determining the performance and timing 
of a given logic block. It turns out that the conditional for 
resetting the circular buffer (see listing 1) causes the main 
loop to be split into three logic parts. As a result, the 
generated logic requires for the main box-car loop 5 
stages (which will correspond to 5 clock cycles on the 
FPGA). The overall maximum time delay for this logic is 
estimated to be 96 time units. This time delay will 
determine the maximum clock frequency at which the 
FPGA can be run. 

By changing the source code for the ring buffer to:  
 
pos_new = (pos + 1) % BUFLEN; 
 
the generated logic only requires 3 stages at the same 

maximum gate delay. This means that while the 
maximum obtainable clock frequency will still be the 
same as with the previous implementation, it will produce 
a result every 3 clock cycles, rather than every 5 cycles.  

One of the great advantages of an FPGA 
implementation is that one is not limited to sequential 
execution, but can exploit temporal parallelism 

(pipelining). In Impulse C, this is accomplished by 
inserting a compiler directive, 

 
#pragma CO pipeline 
 
at the beginning of a loop. While it takes the pipelined 

loop still three clock cycles to generate one result, it can 
start working on a new result while it is still processing 
the previous result, resulting in one result every two clock 
cycles. 
 

 

Figure 1: Data flow graph for the box-car filter. These 
graphs are one of the tools offered by the ImpulseC suite 
to investigate and optimize the hardware processes 
generated from C code.  

 ImpulseC offers a variety of tools to analyze the 
theoretical performance of a hardware process prior to the 
place and route step. E.g. data flow graphs help to 
determine if a sufficient level of instruction level 
parallelism was extracted by the compiler.  

MATRIX-VECTOR PRODUCT 
A kernel often encountered in controls applications is 

the evaluation of a matrix-vector product on integer 
quantities. Listing 2 shows the source code of a matrix 
vector product in Impulse C for a vector length N = 100.  

While this is a straight forward implementation of a 
matrix-vector product, one has to note the directive in the 
inner-most loop. Loop unrolling results in the concurrent 
execution of all iterations of the inner most loop by 
replicating its logic. In this case, this results in 100 
multiply/add units that are executed concurrently. The 
overall cost of the entire matrix-vector product is 
therefore 100 clock cycles. 
   k = 0; 
   for(i = 0; i < N; i++){ 
     for(j=0; j < N; j++){ 
#pragma CO unroll 
       res[i] += matrix[k]*vec[j]; 
     }  
   } 
Listing 2:  Matrix-Vector product in Impulse C. 
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After compilation of the source and generation of the 
hardware configuration, it turns out that the generated 
hardware can only be run at a frequency of 58 MHz, 
primarily due to a slow bus interface of our FPGA board. 
Using an optimized bus interface would allow to run the 
FPGA at about 240 MHz.  At this rate, the overall 
evaluation of the matrix-vector product with N = 100 
takes less than 1.8 μs. For comparison, on a 1.8 GHz 
AMD Opteron processor, the same computation takes 23 
μs. 

The significant speedup observed was only made 
possible by loop unrolling, which exploits the spatial 
parallelism available on FPGAs. As long as enough logic 
blocks are available, this results in significant speedup.  

The generated hardware for the fully unrolled matrix-
vector product takes up about 50 % of all the logic gates 
on a Virtex 4 FX60 FPGA. While manual optimization of 
the placement could reduce the logic use, it shows that for 
more complicated algorithms including multiple matrix-
vector products full loop unrolling could not be afforded. 
However FPGA logic density is expected to increase, thus 
enabling larger designs to be fully unrolled. 

CONCLUSION
Particle accelerator controls applications could greatly 

benefit from the processing power offered by modern 
FPGAs. However, the programming complexity of these 

devices makes is hard for scientists to time-efficiently 
develop algorithms for these devices. High-level tools, 
such as Impulse C, mask this programming complexity of 
FPGAs by allowing the use of standard C for 
development. Application kernels, like box-car filter or 
matrix-vector products, can therefore be implemented 
relatively quickly. The effect of different optimization 
techniques, e.g. loop unrolling or pipelining, can be 
investigated prior to the time-consuming place and route 
steps.   
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