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Abstract

Beam based alignment and control has been a critical
issue for many accelerators. In this paper, we’ve devel-
oped a new approach that can correct the beam orbit using
a systematic quad-scan method, where there is an insuffi-
cient number of beam position monitors. In this approach,
we’ve proposed a calibrated response matrix. This matrix
takes consideration of the different sensitivities of different
quadrupoles in the lattice. With the calibrated response ma-
trix, we can greatly enhance our ability to control the beam
centroid motion and reduce the control effort.

BEAM CONTROL AND STEERING
TECHNIQUES

There have been many approaches for the beam steering
and control for accelerators or storage rings. In [1], there is
a very good discussion on the beam-based alignment tech-
niques for accelerators. In general, we assume that if the
beam passes through the center of a quadrupole, there is no
deflection to the beam. Moreover, when the quadrupole’s
current is varied, the change of beam’s position in the
quadrupole is linearly proportional to the quadrupole’s cur-
rent change. One steering approach is the dispersion-free
steering, which works by simultaneously varying all of the
quadrupoles’ currents by a fixed fraction of their nominal
design values and measuring the beam centroid changes in
the beam trajectory. Another approach is the ballistic align-
ment, which works by turning off some quadrupoles in a
consecutive order and steering the beams to the resulting
magnetic-free region. There is another popular approach
for beam steering by using the orbit response matrix [2]. In
this response matrix algorithm, the element in the matrix is
defined as a linear response function between the change
of the beam position and the change of the dipole current
when the dipole current is varied. The approaches above
work well in their corresponding applications.

However, not all the accelerators have the same diag-
nosis capability. For some accelerators, the beam position
monitors are not enough, i.e., not every quadrupole having
a BPM. Then, the above approach will not be able to work
well since the beam position change due to the dipole cur-
rent change cannot be effectively measured with the BPM
far away from the quadrupole. In this paper, we proposed
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a robust orbit-steering and control algorithm to solve the
problem. We provided simulation results based on the Uni-
versity of Maryland Electron Ring.

Introduction to the University of Maryland Elec-
tron Ring

The University of Maryland Electron Ring (UMER), as
shown in Figure 1, has been a testbed for the low energy
high current beam research [3, 5, 6, 7]. UMER models
the transport physics of intense space-charge-dominated
beams [8], employs real time beam characterization and
control in order to optimize beam quality throughout the
strong focusing lattice. Its current varies from 0.6mA to
100mA which covers a wide region from emittance dom-
inated beams to space-charged dominated beams. Our
past work has proven that UMER is providing fundamental
beam physics research. Comparing to most big and costly
accelerators, UMER has advantage over them in the cost
and safety.

Figure 1: University of Maryland Electron Ring.

Beam alignment and control over a long distance has
been a critical issue for all accelerators, including the
University of Maryland Electron Ring. We require that
the beam centroid trajectory deviate as little as possible
from the design orbit, which is defined by the axes of the
quadrupole magnets. In order to get a high quality beam
for a single turn operation and for multi turn operation, we
need employ advanced control techniques to achieve pre-
cise control on the beam centroid over the beam line. In
UMER, the beam is focused by a set of quadrupoles and its
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trajectory is bent by a set of dipoles which keeps the beam
turn around 360 degrees after one turn.

CALIBRATED CONTROL OF
UNIVERSITY OF MARYLAND

ELECTRON RING

There are two types of diagnostics using for control at
UMER. One is the phosphor screens and the other is the
beam position monitors (BPM). The phosphor screen can
provide images of the beam with a detailed beam profile,
such as phase space, emittance, etc, but it intercepts the
beam. The BPM can capture the beam position without in-
tercepting the beam. In the past beam control for UMER
[9], Li relied on the phosphor screen for the beam control.
This method is reliable but we needed to move the phos-
phor screen from one section to another section. Since the
phosphor screen intercepts the beam, it cannot be used as
diagnostics for beam’s multi-turn operation. Thus, we are
using the BPMs, instead of the phosphor screens to mea-
sure the beam positions [4], especially for the multi-turn
operation.

Figure 2: UMER chamber structure. Between every
two BPMs, there are four quadrupoles and two dipoles.
The distance between two neighboring quadrupoles is
16cm. The distance between the dipole and neighboring
quadrupole is 8cm. The distance between the BPM and the
quadrupole is 8cm.

The algorithm for our current beam control and steering
is based on the conventional response matrix and singular
value decomposition [2, 10, 12]. In this algorithm, we as-
sume there is a linear response between the change of the
beam centroid position and the change of the dipole cur-
rent. Based on this assumption, we build the conventional
response matrix and invert that matrix such that we can get
the corresponding kick force if the beam has some offset
and is not in alignment in the quadrupoles. In general, this
approach works well for large accelerators, for example,
MIT-Bates Linear Accelerator and Stanford Linear Accel-
erator [11] or Indiana University Cyclotron Facility Cooler
Ring [10]. For those big accelerators or storage rings,
they have one BPM for each quadrupole. However, due to
the space constraint and other considerations for a highly
space-charged beam [5], the density of magnets on UMER
is much higher than that of the average ring. UMER’s ring
beam line has 72 quadrupoles, 36 dipoles, 14 BPMs. There
exist ambient fields (including earth magnetic field, envi-

ronment magnetic field) which make beam control more
difficult. As in Figure 2, between every two BPMs, there
are four quadrupoles and two dipoles. 14 BPMs are not
enough measurements for beam control. Our current ap-
proach on beam centroid steering and control is to apply
directly the response matrix algorithm. However, the con-
trol result is limited such that we have difficulty to transport
the beam over one turn around the ring without beam loss.

Recently, we discovered that due to the insufficient num-
ber of BPMs, we should not directly apply the conven-
tional response matrix algorithm. In each chamber, the
distance from different quadrupoles to the same BPM is
different such that the sensitivity is different. In the con-
ventional response matrix approach, the same sensitivity
factor is used because each quadrupole has its own BPM.
However, in UMER, we should not use the same sensitivity
factor as the structure is not uniform for a quadrupole and
its BPM. We did a modification by taking consideration of
the sensitivity–we call it the calibration factor. It is defined
as following

CF ij =
∂XBi

∂IQj ∂XQj

(1)

where CF ij is the calibration factor relating to BPM i and
quadrupole j, ∂XBi and ∂XQj are the beam centroid dis-
placements in BPM i and quadrupole j and ∂IQj is the
current change in quadrupole j.
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Figure 3: Beam centroid correction with earth field. In
the upper figure, we assume there is a random error in the
quadrupole center. The center figure shows the corrected
beam centroid with conventional control and the calibrated
control. The bottom figure shows the bending force re-
quired in each dipole.

The conventional calibrated response matrix is expressed
as following

Rij =
∂XQj

∂IBi

(2)
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where Rij is the element relating to quadrupole j and
dipole i, ∂XQj is the beam centroid displacement in
quadrupole j, and ∂IBi is the current change in dipole i.

The new calibrated response matrix R∗ is defined as

R∗ = R/CF (3)

By adding the calibration factor to the response matrix,
we are actually considering a weighted response matrix–
quadrupoles with different distances to the same BPM hav-
ing different weighting factors in the response matrix.

We use the WARP PIC [13] codes for simulation to
get the calibration factors and the response matrix. Since
UMER beam is a low-energy electron beam such that
it is very sensitive to the earth field. We consider the
cases with/without the influence of the earth magnetic
field. Assuming the beam has some random offsets in
the quadrupoles, the controlled beam centroid in the cen-
ter of quadrupoles and the control signals required for each
dipole are shown in Figure 3 and 4. By comparison, we
have a better corrected beam centroid under the calibrated
control technique. At the same time, the required control
effort is much smaller, which has a substantial advantage
to the power supplies and magnetics.
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Figure 4: Beam centroid correction without earth field. In
the upper figure, we assume there is a random error in the
quadrupole center. The center figure shows the corrected
beam centroid with conventional control and the calibrated
control. The bottom figure shows the bending force re-
quired in each dipole.

CONCLUSIONS

We have greatly improved the beam steering and control
performance by the calibrated response matrix approach.
The control effort is much smaller comparing to the con-
ventional response matrix approach. We are currently
working on experimentation of this algorithm on UMER.
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