
RUNGE-KUTTA DA INTEGRATOR IN MATHEMATICA LANGUAGE

D. Kaltchev and R. Baartman, TRIUMF, Vancouver, Canada∗

Abstract
The method of Truncated Power Series Algebra is ap-

plied in a Mathematica code to compute the transfer map

for arbitrary equations of motion describing a charged par-

ticle optical system. The code is a non-symplectic integra-

tor – a combination between differential algebra module

and a numerical solver of the equations of motion. Using

the symbolic system offers some advantages, especially in

the case of non-autonomous equations of motion (element

with fringe-fields). An example is given – a soft-fringe map

of a magnetic quadrupole.

INTRODUCTION
We have developed a Mathematica code to compute

the transfer map for arbitrary equations of motion (EOM)

describing a charged particle optical system. The code

is a non-symplectic integrator – a combination between

differential algebra (DA) module and numerical solver of

EOM, which is is a well-established technique in map-

building codes – most notably COSY-∞[1]. For magnetic

quadrupoles with fringe fields, the code has been bench-

marked against numerical integration of individual trajecto-

ries and against high-order maps generated with COSY-∞.

Although some form of forward automatic dif-
ferentiation (AD) has already been implemented in

Mathematica’s intrinsic operations on multivariate se-

ries, we preferred to create our own stand-alone package

ad tools.m. It uses the Truncated power series algebra

(TPSA) technique – [2], [3], [4], and can operate on poly-

nomials of arbitrary number of variables to an arbitrary or-

der.

This paper discusses how to create a DA-integrator pack-

age by introducing only minor modifications in some con-

ventional numerical solver. We use the 4-5 order Runge-

Kutta-Fehlberg algorithm – rkf.m. Replacing it with a

higher order Runge-Kutta algorithm is expected to improve

its performance [5].

For systems with fringe-fields (non-autonomous EOM),

the dependence on the path-length along the reference tra-

jectory s is usually described via some auxiliary func-

tions approximating data from calculations or magnetic

measurements. The final map depends on the high-order

derivatives of these functions. Using an analytical compu-

tational system offers an advantage in this case since the

right-hand sides of EOM, in their differential algebra form,

contain only analytic expressions for the above derivatives.

In such a way, no accuracy is lost and the approximating

functions may be arbitrary.

∗TRIUMF receives funding via a contribution agreement through the

National Research Council of Canada.

The alternative Lie algebraic approach [6] is based on

results obtained by Dragt and Forest and consists in solving

numerically the ordinary differential equations for the Lie

polynomials.

AUTOMATIC DIFFERENTIATION
(AD TOOLS.M)

Automatic differentiation (AD) finds the derivative of an
expression without finding an expression for the derivative.
There are no small-difference approximations and the re-
sult is accurate to machine precision. For this, expressions
are replaced with their unique truncated Taylor series, i.e.
multivariate polynomials. Consider for example this ex-
pansion containing all powers of m = 2 dynamical vari-
ables up to order n = 2:

U{0,0} + pxU{0,1} + p2
x U{0,2} + x U{1,0} + px x U{1,1}+

+ x2 U{2,0} (1)

The set of coefficients U�k represents a differential algebra

(DA) variable [2] – we denote it by U . Assuming U�k are

real, the multi-index �k is used to define an address where a

coefficient is stored in some array (of computer memory).

This storage array may have a linear shape:

U ≡ {U{0,0}, U{0,1}, U{0,2}, U{1,0}, U{1,1}, U{2,0}} (2)

and then a numerical constant c is represented with
{c, 0, 0, 0, 0, 0} and the dynamic variable x, with
{0, 0, 0, 1, 0, 0}. In a similar way, all dynamic variables
x, px, y, py . . . can be replaced by corresponding DA vari-
ables. Moreover, arbitrary parameters describing the opti-
cal system may be added. Next, the AD (or TPSA) rules
tell us how to replace any function of these variables by its
DA counterpart. Such rules can be established by using the
differential equation that the function obeys [3], which is
the method chosen for ad tools.m. For example, if U and
V are DA variables (2), then the DA product and square
root are computed from:

PROD[U, V ] = (3)

{U{0,0} V{0,0}, U{0,1} V{0,0} + U{0,0} V{0,1}, U{0,2} V{0,0}+

+ U{0,1} V{0,1} + U{0,0} V{0,2}, U{1,0} V{0,0} + U{0,0} V{1,0},

U{1,1} V{0,0} + U{1,0} V{0,1} + U{0,1} V{1,0} + U{0,0} V{1,1},

U{2,0} V{0,0} + U{1,0} V{1,0} + U{0,0} V{2,0}}

SQRT[U ] = (4)⎧⎪⎨
⎪⎩

√
U{0,0},

U{0,1}
2
√

U{0,0}
,

−U2
{0,1}

8 U{0,0}
+

U{0,2}
2√

U{0,0}
,

U{1,0}
2
√

U{0,0}
,

−U{0,1} U{1,0}
4 U{0,0}

+
U{1,1}

2√
U{0,0}

,

−U{1,0}2

8 U{0,0}
+

U{2,0}
2√

U{0,0}

⎫⎪⎬
⎪⎭

THPAN004 Proceedings of PAC07, Albuquerque, New Mexico, USA

05 Beam Dynamics and Electromagnetic Fields

3226

D01 Beam Optics - Lattices, Correction Schemes, Transport

1-4244-0917-9/07/$25.00 c©2007 IEEE



Expressions as (3) and (4) have the same vector structure

as (2), each element being the series coefficient or, with ac-

curacy to some numerical factors, the partial derivative of

a composite function. For example, by taking a square root

of (1) and expanding – the result is (4). Obviously, (3) and

(4) can easily be generated on a symbolic computational

system (Series command in Mathematica). However the

native Mathematica implementation has the disadvantage

that the maximum number of variables n and the order of

the polynomials m need to be fixed and one needs to pre-

pare a dedicated notebook for every particular problem.

We have created a package ad tools, where the result

of practically arbitrary DA operation is built recursively.

To see that this might be possible, choose some component

of (3) or (4) and notice its position. The element found

there does not depend on the elements in (2) that are on the

right of this position. The package is less than 100 lines

long, it has the same speed as the Series command and

(with however a considerable programming effort) may be

transfered to other languages. Other features of ad tools,

also absolute prerequisites for an automatic differentiation

package (see [8]), are:

• m and n are arbitrary input parameters – all arrays re-

size automatically depending on the problem at hand;

• a method of indexing that provides speed;

• DA operations: PRODuct, POWER, DERivative (see [7])

and DIVision;

• functions of DA variables: EXP, LOG, SQRT, SINCOS;

• concatenation of polynomial maps.

RUNGE-KUTTA INTEGRATOR (RKF.M)
In practice any calculational algorithm which relates out-

put quantities to initial quantities may be converted via

TPSA to generate power series expansions of the output

quantities in terms of initial ones.

Consider the initial value problem for an optical element

with fringe fields and denote by der the vector of the right-

hand sides (derivatives) of the non-autonomous EOM:

y′
i = deri(y, s), y(sini) = y0, (5)

where y ≡ {x, px, . . . } and ′ denotes derivative with re-

spect to s. We choose a numerical solver of (5) which

has automatic step size control and the ability to go back-

wards over the independent variable s, so that one call:

rkf[sini, s,der], produces a numerical approximation to

the exact solution y(s).
To obtain a DA integrator, the first step is to replace all

occurrences of yi in der and in the initial condition in (5)

with DA variables (capital cases): Yi = MK(yi), where MK
is the “make-DA-variable” operator in ad tools. For the x
component, the result can be found in the previous Section.

Next, one has to replace all nontrivial1 arithmetic opera-

tions and elementary functions in der with their DA coun-

terparts. The Mathematica’s substitution rules have been

1Addition and subtraction are trivial operations – they are performed

coordinate-wise.

found very useful at this point and, omitting the details,

we denote the result by DER(Y , s). Now a single call

rkf[sini, s,DER] generates the Taylor map of the system:

Msini→s .

If the right-hand-sides are power series in the com-

ponents of y, then all non-trivial DA operations that

one needs are power and product. This is obvious for

autonomous EOM. For non-autonomous EOM, such as

(5), this is again possible if the s-dependence is de-

scribed with an auxiliary function K(s), all derivatives of

which are known to our computational system in analytic

form. Now the right-hand sides of EOM are given by

der(y,K(s),K′(s),K′′(s), . . . ) and contain polynomials

with coefficients depending on K(p), where p denotes the

order of the derivative over s. Since the transformation

der → DER involves no differentiation, but only consists

in copying a coefficient into its correct position in the DA

array, all functions K(p)(s) enter DER in symbolic (and

hence analytic) form making it possible to compute DER
exactly at each point s.

If the right-hand-sides of EOM contain elementary func-

tions of the components of y, these need be encoded as DA

operators in the same way as this was done with SQRT in

the previous section.

EXAMPLE: HIGH ORDER SOFT-FRINGE
MAP OF A MAGNETIC QUADRUPOLE
In this section we compute the third-order map for an

on-momentum particle passing through a quadrupole with

position-dependent gradient k(s). The 4th order map terms

are zero due to the symmetry. The vectors der and der0 ≡
der|k(s)→0 are derived via straightforward differentiation

of this expanded Hamiltonian [9]:

H =
1
2

(p2
x + p2

y) +
1
2

k(s) (x2 − y2) +
1
8

(p2
x + p2

y)2−

− 1
12

k′′(s) (x4 − y4) − 1
4

k′(s) (xpx − ypy)(x2 − y2).

(6)

Consider a bell-shaped function k(s) approaching a con-

stant k0 = k(0) in the centre of the quadrupole. The effec-

tive field boundaries are at s = −L and s = L (effective

magnetic length 2L) and the full aperture is D. Since our

intention is to compare with COSY-∞, describe the field

shape with an Enge function E:

k[s] = k0 (E[s − L,D] + E[−s − L,D] − 1) ;

E[z,D] ≡ 1

1 + exp
[∑5

k=0 ak( z
D )k

] . (7)

The transfer map from −L to L is a composition (denoted

by ◦ ) of three maps:

MQ = M(0)
−L→−s∞ ◦M−s∞→s∞ ◦M(0)

s∞→L (8)

Proceedings of PAC07, Albuquerque, New Mexico, USA THPAN004

05 Beam Dynamics and Electromagnetic Fields

1-4244-0917-9/07/$25.00 c©2007 IEEE

D01 Beam Optics - Lattices, Correction Schemes, Transport

3227



with s = ±s∞ being some locations far from the origin

(s = 0).

For a test, we take k0 = 1 m−1, 2L = 0.5 m, D =
0.05 m, s∞ = 1.5L and choose the set of Enge coef-

ficients ak to be the COSY-∞ default fringe-field option

FR=3 (Fig. 1 shows k(s)):

ak ={0.296471, 4.533219,−2.270982,

1.068627,−0.036391, 0.022261}.

�0.3�0.2�0.1 0.1 0.2 0.3
s

0.2

0.4

0.6

0.8

1

k�s�

Function k(s) and a stepwise function:

− L < s < L.
Figure 1:

The Taylor map (8) to fourth order is generated with the

script in Figure 2 (right) and the result is shown in Fig-

ure 3 (zero elements are not shown). The corresponding

COSY-∞ commands, Figure 2 (left), produce the map in

Figure 4. They are in good agreement

ap:=0.05/2; k0:=1;

OV 4 2 0 ;

RPE 1000 ;

Bt:=k0^2*CHIM*ap;

UM ;

fr 3;

mq 0.5 Bt ap;

Pm 6 ;

n = 4; m = 4;

X={x,px,y,py};

<< ad_tools.m

<< rkf.m

Y = {MK[x],MK[px],

MK[y],MK[py]};

rkf[-L, -Sinf, DER0];

rkf[-Sinf, Sinf, DER ];

rkf[ Sinf, L , DER0];

PrintMap[Y];

Figure 2: Scripts to compute the Taylor map of a magnetic

quadrupole: COSY-∞ (left) and the rkf package (right).

Here Sinf≡ s∞ and DER0≡ DER |k(s)→0 .

REFERENCES
[1] M. Berz and K. Makino, COSY Infinity Version 8.1,

http://cosy.pa.msu.edu

[2] Berz, M. “ Differential algebraic description of beam dynam-

ics to very high orders”, Particle Accelerators 24, 109 (1989).

[3] R. Neidinger, “An efficient method for the numerical evalua-

tion of partial derivatives of arbitrary order”, ACM Transac-

tions on Mathematical Software (TOMS), 1992.

[4] D. Kalman, R. Lindell, “A Recursive Approach to Multivari-

ate Automatic Differentiation”, Optimization Methods and

Software, 6 (1995) 161-192.

[5] Berz, M. “Computational aspects of optics design and simu-

lation: COSY INFINITY”, NIM A298 (1990) 473-479.

[6] R. Ryne, A.J. Dragt, “Numerical Computation of Transfer

maps using Lie Algebraic Methods”, Proc. of PAC 1987.

x px y py
0.877581 −0.479236 0 0 {1, 0, 0, 0}
0.479623 0.877581 0 0 {0, 1, 0, 0}
0 0 1.12762 0.521299 {0, 0, 1, 0}
0 0 0.52088 1.12762 {0, 0, 0, 1}
0.01138 −0.125797 0 0 {3, 0, 0, 0}
−0.157662 −0.154298 0 0 {2, 1, 0, 0}
−0.208893 0.187407 0 0 {1, 2, 0, 0}
0.202422 −0.00676766 0 0 {0, 3, 0, 0}
0 0 −0.0516499 −0.445424 {2, 0, 1, 0}
0 0 −0.0618326 −0.36368 {1, 1, 1, 0}
0 0 0.122494 0.220189 {0, 2, 1, 0}
0 0 0.251901 −0.0376499 {2, 0, 0, 1}
0 0 −0.0150236 −0.113106 {1, 1, 0, 1}
0 0 0.279616 0.108483 {0, 2, 0, 1}
−0.0621854 −0.507696 0 0 {1, 0, 2, 0}
−0.252471 −0.0774142 0 0 {0, 1, 2, 0}
−0.0616344 −0.362365 0 0 {1, 0, 1, 1}
−0.016282 −0.127517 0 0 {0, 1, 1, 1}
−0.127225 −0.276544 0 0 {1, 0, 0, 2}
0.217048 −0.142442 0 0 {0, 1, 0, 2}
0 0 0.0359988 −0.199175 {0, 0, 3, 0}
0 0 0.367646 −0.214046 {0, 0, 2, 1}
0 0 0.297545 −0.328965 {0, 0, 1, 2}
0 0 0.30663 −0.00807945 {0, 0, 0, 3}

Figure 3: Taylor map output – package rkf.m.

x px y py
0.8775805 −0.4792355 0.000000 0.000000 1000
0.4796232 0.8775805 0.000000 0.000000 0100
0.000000 0.000000 1.127623 0.5212993 0010
0.000000 0.000000 0.5208796 1.127623 0001
0.01139819 −0.1257492 0.000000 0.000000 3000
−0.1576746 −0.1542672 0.000000 0.000000 2100
−0.2088959 0.1874384 0.000000 0.000000 1200
0.2024207 −0.006760539 0.000000 0.000000 0300
0.000000 0.000000 −0.05164986 −0.4454244 2010
0.000000 0.000000 −0.06183257 −0.3636798 1110
0.000000 0.000000 0.1224945 0.2201890 0210
0.000000 0.000000 0.2519014 −0.03764989 2001
0.000000 0.000000 −0.01502357 −0.1131063 1101
0.000000 0.000000 0.2796165 0.1084832 0201
−0.06218542 −0.5076964 0.000000 0.000000 1020
−0.2524710 −0.07741421 0.000000 0.000000 0120
−0.06163436 −0.3623650 0.000000 0.000000 1011
−0.01628207 −0.1275172 0.000000 0.000000 0111
−0.1272251 −0.2765446 0.000000 0.000000 1002
0.2170479 −0.1424416 0.000000 0.000000 0102
0.000000 0.000000 0.03598315 −0.1992755 0030
0.000000 0.000000 0.3676672 −0.2141294 0021
0.000000 0.000000 0.2975509 −0.3290218 0012
0.000000 0.000000 0.3066314 −0.008089533 0003

Figure 4: Taylor map output – COSY-∞.

[7] D. Kaltchev, “Implementation of TPSA in the Mathematica

Code LieMath”, EPAC’06, Edinburgh, July 2006

[8] http://www.autodiff.org/

[9] Irwin, J., Chun-Xi Wang, “Explicit soft fringe maps of a

quadrupole” Proc. of PAC’95, May 1995.

THPAN004 Proceedings of PAC07, Albuquerque, New Mexico, USA

05 Beam Dynamics and Electromagnetic Fields

3228

D01 Beam Optics - Lattices, Correction Schemes, Transport

1-4244-0917-9/07/$25.00 c©2007 IEEE


