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Abstract

The GSI heavy ion synchrotron SIS18 will be used as
a booster for the new FAIR facility SIS100. A well-
controlled linear optics of the SIS18 is necessary for fur-
ther optimization studies of nonlinear dynamics, resonance
induced beam loss, dynamic aperture and nonlinear error
measurements. The analysis of the orbit response matrix
(ORM) [1] is a powerful tool to calibrate the linear lattice
models. We present results of orbit response analysis of
several measurement campaigns on the SIS18 and discuss
the achieved improvement of the SIS18 performance.

INTRODUCTION

The SIS18 has 12 periods and a nominal working point at
injection energy of Q = (4.29; 3.29). There are 24 beam
position monitors (BPMs) with 12 in each plane used for
the CO diagnostics [2]. For CO control and correction 6
horizontal and 12 vertical steerers are available. 24 dipole
magnets are used for the beam bending. For focusing there
are 24 horizontal focusing quadrupoles and 12 vertical fo-
cusing quadrupoles (triplet structure).

The present SIS18 CO correction is based on the three-
steerer local bump method [3, 4]. The local bump is pro-
vided by a certain ratio between the steering angles of three
neighboring steerers [4]. To hold precisely this ratio in the
measurement ‘well’ calibrated steerers are required [3], i.e.
all the steerers have the same calibration factors, which are
equal to 1.0. Therefore, the calibration of the steerers and
BPMs in SIS18 has to be carried out and can be done by
the ORM method [1, 3].

The linear optics errors (model parameters) consid-
ered here are: BPM and steerer calibration factors, and
quadrupole gradient errors. The linear coupling was not
considered and contributes to systematic errors of the con-
sidered model parameters. The measurements were per-
formed in conditions to reduce the impact of linear cou-
pling. The condition of linear coupling Qx−Qy = 1 for the
measured tunes is not satisfied. In all three measurements
it has been also checked that a kick in vertical (horizontal)
direction has no horizontal (vertical) orbit response.

MODEL

The orbit response matrix gives a change in closed orbit
xco, yco by change in steerer angles θx, θy [1](

xco

yco

)
= Morm

(
θx

θy

)
, (1)

where Morm is either the measured or model response ma-
trix, xco = (xco,1 xco,2 ...), yco = (yco,1 yco,2 ...), θx =
(θx,1 θx,2 ...), θy = (θy,1 θy,2 ...) and the indices 1, 2, 3...
are the BPMs and steerer sequence as found in the ring.
Now we define the following model parameters: 1) BPM
calibration factors g = {gi}, i = 1...I , I is the total
number of BPMs; 2) steerer calibration factors f = {fj},
j = 1...J , J is the total number of steerers; 3) quadrupole
gradients q = {ql}, l = 1...L, L is the total number
of quadrupoles; which form the model parameter vector
x = (g, f ,q) = {xm}, m = 1...M , M = I + J + L is
the total number of model parameters. To minimize the dif-
ference between the model Mmod and measured Mexp orbit
response matrices, the vector Vn = (Mmod

ij − M exp
ij )/σij

is defined, where we have ordered the component of the
matrix ij into a vector of component n. The index n runs
over all the data points which formed by multiplication of
the number of steerers varied j and the number of BPMs
used i. To each n corresponds a presice value of ij, that
is n → (i, j). The total number of fitting data points is
N = I ×J . The weighting factor σij gives more weight to
those measured ORM elements with lower noise. The mea-
sured matrix always includes the BPM and steerer calibra-
tion factors and can be derived via M

exp
ij = M data

ij /(gi fj).
The following χ2-function [5] is introduced as a measure
of difference between Mmod and Mexp and has to be mini-
mized:

χ2 =
∑

n

Vn
2 =

∑
n

(Mmod
ij

− M data
ij

/(gifj))
2

σij
2

. (2)

The multi-dimensional non-linear least-square problem
(2), i.e. the minimization of χ2, can be solved by vary-
ing the model parameter vector x, which are quadrupole
gradients q, steerer calibration factors f and BPM calibra-
tion factors g. The variation of the V mth component due
to the variation of the m-th component of x is found [5]

Vn(x + Δx) ≈ Vn(x) +
∑
m

∂Vn

∂xm
· Δxm . (3)

Imposing Eq. (3) to zero we find an approximate solu-
tion by using the multi-dimensional Newton method and
build an iterative process V + JΔx = 0, where the Ja-
cobian J of the linear system Eqs. (3) consists of partial
derivatives of the parameters Jnm = ∂Vn/∂xm. For the
case of the overdetermined (N > M ) least-square prob-
lem (2) SVD gives a solution with the minimum norm
that is the best approximation in the least-square sense [5]
J = UΛQT , where U, Q are orthogonal matrices, Λ is
a diagonal matrix consisting of eigenvalues of the matrix
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JT J. The change in model parameter vector x in one it-
eration is performed via pseudoinverse of the decomposed
Jacobian J : Δx = −J−1V = −QΛ−1UT V . The model
parameter vector x on the k + 1 iteration is defined as
xk+1 = xk − J−1(xk)V(xk) . The new value xk+1 has to
satisfy the χ2-convergence condition: χ2

k+1 < χ2
k. Practi-

cally the iterations can be stopped when an extra iteration
makes only a small change to χ2, so that the fitted model
can be obtained. Complementary to the SVD method a cal-
culation with the Levenberg-Marquardt method was per-
formed (JT J + λI)Δx = −JT V, where I is the identity
matrix, λ is an adjustable parameter, which belongs to the
interval [0, 1]. At every iteration the parameter λ is adjusted
to satisfy the χ2-convergence condition. The above fit-
ting scheme was applied to the simulated ‘noise-free’ hor-
izontal and vertical ORMs, generated by MAD [6] for the
SIS18 lattice by introducing random quadrupole gradient
errors within maximum 5% deviation of the nominal val-
ues. ‘Noise-free’ means that all σij are equal to 1.0. To
simulate ‘wrong’ BPM and steerer calibration, the mod-
elled matrices were multiplied by a certain random factor
out of the interval [0.9; 1.2]. The model ORMs (as well
as their χ2s) were functions of random BPM and steerer
calibration factors, and quadrupole gradient errors. The si-
multaneous fit of all the parameters was performed by the
SVD method and by the Levenberg-Marquardt method: the
two methods converge to the same result, χ2 monotonously
converges to 0 with any desirable accuracy and the solution
given by a random set of errors for the model parameters is
reconstructed.

EXPERIMENT AND ANALYSIS

To fit the ORM several measurements in the SIS18 were
performed in February 28, April 8 and April 20 2006,
where the ORM was measured three times [1].
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Figure 1: Vertical CO vs. vertical steering angles.

The accuracy of a beam position measurement, defined
as a statistical error of a single measurement is ± 0.5 mm
in horizontal and ± 0.14 mm in vertical plane respectively.
Note that the horizontal accuracy is ∼3 times poorer than
the vertical. This accuracy is determined by the ADC res-
olution, thermal noise of the preamplifier and digitaliza-
tion noise. Both noise sources have stochasic character,
whereas the noise caused by the digitalization is dominant.
The thermal noise is reduced by using the narrowband anal-
ysis. The averaging over many turns increases the accuracy

of the position measurement, but it can be used only as long
as the beam parameters remain constant. Otherwise, the
changes of the beam parameters enter as systematic error
in the position measurement accuracy. The ORM is given
by the linear fit to the closed orbit vs. the steerer angle.
The slopes of the lines in Fig. 1 form the ORM and their
standard deviations form the rms uncertainty matrix σij .
The best accuracy of the ORM achieved in the fit is 0.02
mm/mrad. The maximum deviation from the linear fit is
0.9 mm/mrad.

experiment

model after fit

model before fit

Figure 2: Measured (April 20) and model response at 12
BPMs for the vertical steerer #1, BPM #11 is missing.

We applied the above algorithm to calibrate 24
quadrupole gradients (12 vertical focusing and 12 horizon-
tal focusing), 24 BPMs with 12 in each plane and 18 steer-
ers (6 horizontal and 12 vertical) of the SIS18. The de-
generacy [1] of BPM and steerer calibrations was avoided
by assuming one horizontal (#6) and one (#12) vertical
steerer were calibrated correctly (have calibration factor 1).
In the ORM modelling these two steerer strengths are kept
fixed, and all the other steerers and BPMs were calibrated
relative to these two steerers. Fig. 2 shows the ‘model be-
fore’ obtained with MAD for the vertical steerer #1 be-
fore ORM fit applied, the ‘model after’ is a MAD simula-
tion for the same steerer using parameters derived from the
fit. The simplest way to find out how much the fitted pa-
rameters vary due to random errors in the measurements
is to analyze each of three data sets separately, and see
how much the fitted parameters vary [1]. The minimum
χ2 normalized by the number of data points N is taken
as a criteria of the fit quality and defined as follows [1]
χ2

min per data point = χ2
min/Ndata points � 1, indicates that errors

in the fitting are of the order of random errors [1, 5]. In
Table 1 the minimum χ2s per data point and the total num-
bers of data points of the three ORM measurements are
presented. The vertical minimum χ2 per data point of the
February 28 measurement is large compared to the April
measurements, for which the minimum χ2s per data point
are centered around 1.0. The value 13.98, several standard
deviations above 1.0, could be explained as the fact that or-
bit measurement errors were not normally distributed and
there is a contribution of systematic errors to the Febru-
ary 28 result. However, in the results of February 28 the
vertical data fit agree well with the other two data fits, see
Fig. 3. The agreement of all three vertical data fits within
rms deviation of several % indicates the uniqueness of the
retrieved vertical model. Fig. 3 a) shows that SIS18 vertical
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Table 1: χ2 statistics from three ORM data fits.

Exp. vert. χ2
min per data point hor. χ2

min per data point

Feb. 28 13.98, N = 120 3.30, N = 60
Apr. 8 1.19, N = 132 19.02, N = 72
Apr. 20 0.74, N = 132 23.17, N = 72

BPM calibrations are centered not around 1.0, but around
0.7. The horizontal BPM calibrations are lowered in ∼10-
15% as well. In Ref. [2] is noticed that the scaling pick-up
constants for the BPMs obtained in the simulations are 20%
larger than the experimental values measured with the test
set up, so that agrees with ORM simulation. As the CO
correction by local bump method was possible, all steerers
were expected in general to be well calibrated. The verti-
cal steerer calibrations retrieved from the ORM model are
centered around 1.0 except for the steerer #11, see Fig. 3
b). The ORM modelling gives 33% lower calibration fac-
tor for vertical steerer #11 (S11KM2DV). For this steerer
it was found that its magnetic field is ∼30% weaker than
expected, as predicted by ORM analysis. The reason for
that is not a device malfunction, but a construction differ-
ent design: the steerer has a larger aperture. This steerer
needs a correction in the control program, that its effect
becomes equal to those of the other steerers.
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Figure 3: Vertical BPM a) and steerer b) calibration factors,
quadrupole gradient errors c).

The horizontal minimum χ2s per data point all are not
very satisfactory, see Table 1. The present low accuracy of
the horizontal beam position led to high systematic and ran-

dom errors in the measured horizontal response matrices.
The experimental horizontal ORM has gotten many small
eigenvalues that correspond to noise in the data. In the hor-
izontal data fit the SVD method with tolerance threshold
equal to eigenvalue ∼0.05 has been applied. The present
accuracy of the horizontal measurements does not allow to
uniquely define all 24 horizontal focusing quadrupole er-
rors in the ring and brings large error bars in the fit of other
parameters. It was possible to define uniquely only 12 hor-
izontal focusing quadrupole errors.

The the currently used values of quadrupole gradients of
the SIS18 lattice model [6] are proper adjusted. Therefore,
the quadrupole errors are expected to be not too high in av-
erage ∼0.1-0.3% of the nominal values. It is well known at
GSI that the SIS18 tune has a systematic tune shift from the
one set in SISMODI. Simulations made with the retrieved
quadrupole gradient errors bring the model tune closer to
the measured value.

The crosscheck wherever the fitted model parameters are
correct is made by comparing them with the SIS18 data
that were not used in the model fitting. As ORM measure-
ment on April 20 was done for the tune Q = (4.17, 3.35)
the following test was performed: the ORM model de-
riving from two measurements for the tune (4.29; 3.29) is
used to predict the measurement for the tune (4.17; 3.35).
The quadrupole gradient errors were retrieved from two
measurements for the tune (4.29; 3.29) and then modelled
in MAD. The model MAD matrix multiplied by BPM
and steerer calibrations retrieved from the same two mea-
surements is able to fit the measured matrix for the tune
(4.17; 3.35). Using the model parameters derived from two
measurements the initial vertical χ2 normalized by number
of data points has been reduced from 942.03 to 40.89.

CONCLUSION
Three ORM were fitted and provided the detailed infor-

mation on the SIS18 linear optics. The fitted values of the
24 quadrupole gradients, 24 BPM and 18 steerer calibra-
tions provide the optimized lattice model as well as hints
of device malfunctions. The 6 horizontal steerers used at
the moment are too few parameters for the horizontal ORM
modelling. To better resolve the horizontal data at least 12
steerers are needed: one in each period. The dispersion
was not measured in the SIS18 ORM experiments here dis-
cussed. The dispersion measurement would be desirable in
the future.
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