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Abstract

Intrinsic fourth order space charge resonances may occur
in linear as well as in circular accelerators. The fourth or-
der difference resonance (”emittance exchange” or ”Mon-
tague” coupling-resonance) and the fourth order structure
resonance lead to emittance degradation depending on the
strength of space charge, the crossing rate through the res-
onance and the lattice. Based on fully self-consistent simu-
lation with a 2D code in the coasting beam limit, we present
scaling laws for the “Montague” resonance and for the
fourth order structure resonance in terms of simple power
law expressions.

INTRODUCTION

Space charge driven resonances are an important issue in
high intensity linear or circular accelerators. They can lead
to emittance degradation or beam loss and cannot be elimi-
nated by correction of the optics as they are intrinsic. While
numerous studies have been dedicated to different aspects
of this subject we focus in this paper on two candidates
of fourth order: The “Montague” emittance coupling reso-
nance [1] and the fourth order structure resonance caused
by the systematic “space charge octupole”. The aim of our
study is to extract scaling laws describing in a simplified
way the effect of space charge, tune ramp, emittances etc.
on the expected emittance degradation. Although both can-
didates reveal enough complexity, involving self-consistent
space charge and all the specifics of a fourth-order reso-
nance, we have been encouraged by the findings of a recent
detailed study on the Montague case [2]. Based on ana-
lytical theory and self-consistent simulation it was found
there that the emittance change is the same if the ratio of
the square of the space charge tune shift and the tune ramp
is invariant. This is confirmed here also for the fourth or-
der structure resonance and used as basis for deriving our
self-consistent scaling laws.

We note here that in a non-self-consistent approach
(using a fixed space charge potential with an update of
rms quantities during the evolution of the resonance) the
fourth order structure resonance, along with other lower
and higher order space charge driven resonances, has re-
cently been the subject of a parameter study, with appli-
cation to the FFAG and other proton drivers [3]. One of
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the important findings of Ref. [3] has been that the lattice
effect can be factorized and thus separated from the space
charge and tune ramp effect. The scaling law in Ref. [3]
employs, however, lower powers of space charge tune shift
and tune ramp than we find in the present paper, which may
be attributed to the effect of self-consistency.

Our self-consistent simulations are carried out with
the MICROMAP-code [4] using 50.000 particles and a
128x128 grid with conducting boundary conditions on a
square box of width 6 times the horizontal rms size of the
beam. We use the lattice of the SIS18 at GSI, which has
12 super-periods with the option of a triplet focusing cell
per period. In our simulations we vary emittances, cur-
rents and working points over a broader range than nor-
mally used and take Gaussian initial distributions. Since
the Montague-resonance is driven by the zeroth harmonic
of the lattice functions, e.g. 2Qx − 2Qy ≈ 0, it is expected
to be “immune” to the actual lattice beta function, which
is also confirmed by earlier simulation [2]. For the fourth
order structure resonance, 4Qy ≈ 12, the weight of the un-
derlying Fourier harmonic matters and the answer is lattice
dependent.

MONTAGUE SCALING
The basic idea is to start from analytical expressions for

stop-band width and growth times, which were derived in
Ref. [2]. The width of the stop-band in terms of a spread of
the horizontal tune was found analytically as:

Θ =
3
2
(
√

εr − 1)∆Qx, (1)

where ∆Qx is the incoherent space charge tune spread de-
fined as maximum tune spread of a Gaussian beam, i.e.
twice the KV-equivalent tune shift; εr is the ratio of ini-
tial transverse emittances (here assumed ≥ 1, without loss
of generality). The number of betatron periods, after which
emittance exchange occurs, was obtained in Ref. [2] ap-
proximately as (including also the limit εr → 1):

N−1
ex ≈ (

√
εr − 1)

∆Qx

Q0,x
. (2)

As an example for dynamical crossing we move the
working point Q0,x upwards, starting from the side of
lower tunes, over the range 5.15 ≤ Q0,x ≤ 5.27 enclosing
the stop-band, while Q0,y is kept fixed at the value 5.21.
For this crossing “from below”we apply a linear tune ramp
in time. A picture of the final emittances after crossing the
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Figure 1: Final emittances after crossing the stop-band at
variable number of turns (∆Qy = −0.105).

band at variable number of turns is shown in an example of
Fig. 1.

In the 100 turns case the essential part of the stop-band,
which has a tune width of 0.04, is crossed in 33 turns or 205
betatron periods. This time well agrees with the fastest rise
time of the static case, which therefore sets the time-scale
needed for a crossing at a speed chosen to just equalize final
emittances, in agreement with Eq. 2.

For very slow crossing emittances are practically ex-
changed. For faster crossing the exchange is only partial,
with a linear dependence on the number of turns as sug-
gested by Fig. 1, hence proportional to the inverse of the
tune ramping rate.

Our scaling is based on the observation confirmed by
simulation (see cases in Table 1) that the emittance growth
is unchanged, if for a given εr the actual width of the stop-
band -∝ ∆Qx - is crossed during a time, which is inversely
proportional to ∆Qx. Hence, this two-fold dependence on
∆Qx justifies the assumption - also confirmed by simula-
tion - that the emittance growth depends on the scaling term

(∆Qx)2

Q̇
, (3)

where Q̇ is defined as tune change in x per turn.
Using Eq. 3 and Eqs. 1,2 for the additional dependence

on εr, we therefore suggest a scaling law for the relative
growth of the smaller emittance (here in y)

∆εy

εy
= α2,2

((
√

εr − 1)∆Qx)2

Q̇
, (4)

assuming that the full stop-band is crossed at constant rate
and Q̇ is the change of the horizontal tune change per turn
(ignoring here the sign of it). α2,2 is a factor, which needs
to be determined; a first estimate follows from the graph of
Fig. 1 as α2,2 ≈ 0.5 .

To ensure the validity of Eq. 4 we use it to determine the
corresponding α2,2 for a broader diversity of simulations

Table 1: Montague simulations
case εx εy −∆Qx turns Q̇

∆εy

εy
α2,2

1 7.5 2.5 0.058 50 0.0024 0.36 0.48
2 7.5 2.5 0.029 100 0.0006 0.37 0.48
3 7.5 2.5 0.059 15 0.0081 0.12 0.52
4 7.5 2.5 0.059 100 0.0012 0.81 0.53
5 7.5 2.5 0.028 400 0.0003 0.72 0.52
6 10.0 2.0 0.045 100 0.0012 1.31 0.51
7 7.5 3.8 0.072 100 0.0012 0.45 0.60

and summarize results in Table 1 (rms emittances in units
of π mm mrad): This table shows the validity of the pro-
posed scaling and confirms that α2,2 ≈ 2 is a good choice
for the fore-factor. In case 1 the Q0,x was swept over the in-
terval 4.15...4.27, in case 2 over 4.18...4.24 (Q0,x = 4.21),
which confirms the invariance claimed in Eq.3. In all other
cases the sweep was over 5.15...5.27 (Q0,x = 5.21). Cases
3-5 show the validity of the scaling with the speed of cross-
ing. Cases 6 and 7 show different emittance ratios; for too
small ratios the scaling appears to slightly underestimate
the emittance exchange effect.

Crossing in the opposite direction (downwards tune
ramp) leads to a typically 20 to 30% weaker emittance
exchange due to the fact that space charge tune shifts
(with progressive emittance exchange) counteract the ap-
plied tune ramp; for very slow crossing this asymmetry is
even more pronounced (details see Ref. [2]).

FOURTH ORDER STRUCTURE
RESONANCE SCALING

This purely space charge driven resonance appears near
the condition 4Q0,y = N , with N the number of super
periods; likewise in a transport lattice, where the phase ad-
vance per cell of 900 is approached from above by means of
space charge or by reducing the focusing. It was first pre-
dicted theoretically in Refs. [6],[7]. The fourth order struc-
ture resonance can be in competition with the envelope in-
stability, which appears under similar conditions (see also
a more recent study in Ref. [8]).

In Fig. 2 we show a phase space plot obtained for a sim-
ulation of the SIS18 lattice. In normal operation the ver-
tical phase advance per cell (and super-period) is close to
1000, hence Q0,y ≈ 3.3. For our example we have chosen
a downwards tune ramp crossing symmetrically the value
Q0,y = 3 by starting from 3.3 and ending at 2.7 in all cases
considered. Parameters are those of case 2 in Table 2 be-
low. The scatter plots show the typical result of particles
trapped in fourth order resonance islands, which move to
larger amplitudes to compensate the lowered bare tune by
weaker space charge. At the end of the ramp the ampli-
tude dependent de-tuning results in a diffuse halo in verti-
cal phase space.

In order to find an appropriate scaling law we have sim-
ulated a set of parameter combinations as shown in Ta-
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a) b)

Figure 2: a) Vertical phase space plot exactly on resonance,
b) at end of tune ramp.

ble 2 in the order of increasing emittance growth (initial
rms emittances equal in x, y). Cases 5,7,8 and 10 show

Table 2: Fourth order mode simulation
case εy -∆Qy turns Q̇

∆εy

εy
α4

1 7.5 0.20 50 0.01200 0.08 0.0076
2 7.5 0.05 1600 0.00038 0.12 0.0027
3 7.5 0.10 400 0.00150 0.12 0.0028
4 7.5 0.20 100 0.00600 0.13 0.0028
5 7.5 0.20 150 0.00400 0.20 0.0020
6 7.5 0.05 3200 0.00019 0.34 0.0019
7 7.5 0.20 200 0.00300 0.36 0.0020
8 7.5 0.20 300 0.00200 0.79 0.0020
9 7.5 0.10 1600 0.00038 1.21 0.0017
10 7.5 0.20 400 0.00150 1.26 0.0018
11 2.5 0.20 400 0.00150 1.27 0.0018
12 7.5 0.30 225 0.00267 1.81 0.0016
13 7.5 0.20 800 0.00075 2.95 0.0010
14 7.5 0.10 3200 0.00019 2.97 0.0010
15 7.5 0.30 450 0.00133 3.79 0.0008

that the emittance growth is best fitted by a scaling∝ Q̇−2.
Comparing cases 4,3 as well as 3,2 and 10,9 suggests that
the emittance growth is only a function of the scaling term
introduced in Eq. 3 (here taken in y); also, independence of
the actual emittance value is shown by comparing cases 10
and 11. Cases with < 20% emittance growth don’t fit into
this scaling - presumably due to transient effects. We thus
find that the results of Table 2 are best fitted by using the
power 2 of the scaling term, hence we obtain

∆εy

εy
= α4

(
(∆Qx)2

Q̇

)2

. (5)

This expression is then applied to simulation results to
solve for the fore-factor α4 as shown in Table 2. This sug-
gests that α4 ≈ 0.0018 as average for cases 5-12 is an
appropriate choice for it. For emittance growth exceeding
200% (cases 13-15) this scaling overestimates - presum-
ably due to saturation effects.

It should be noted that the downwards tune ramp con-
sidered so far has a stronger effect on the emittance growth
than the equivalent upwards tune ramp due to the fact that
the shrinking space charge tune shift pertaining to a de-
creasing charge density - due to the resonance effect - coun-

teracts the downwards moving tune. In this way, particles
trapped into resonance islands are driven to larger ampli-
tudes, which decreases the charge density and helps main-
tain the resonance condition due to the space charge de-
tuning effect. This effective “tune ramp deceleration” is
changed into a “tune ramp acceleration”for the upwards
tune ramp. This asymmetry effect between downwards and
upwards is negligible, if the downwards tune ramp leads
only to small emittance growth (of the order of or less than
10%); but for large downwards effect the upwards emit-
tance growth is found to be reduced to about 30% or less in
most cases.

A remark is appropriate on the influence of the initial dis-
tribution. A Gaussian one provides a strong “space charge
octupole” (which rolls of outside of the beam as opposed
to a real octupole), but even an initially uniform KV beam
would develop a similar nonlinearity via the fourth order
instability studied in Ref. [7].

SUMMARY
Our scaling relationships show that only few parameters

are needed to predict the effect of resonance crossing on
rms emittances for the two fourth order resonances consid-
ered in the frame of a fully self-consistent simulation. In
both cases the emittance increment depends on a power of
the scaling term ∆Q2

x

Q̇
, which is the main parameter. For

given tune ramp Q̇ the emittance growth is found to de-
pend on the second power of the space charge tune shift for
the Montague case, and on the fourth power for the fourth
order structure resonance. The growth is practically inde-
pendent of the lattice in the Montague case. For the fourth
order structure resonance the periodic variation of the beta
function is essential; the dependence of α4 on the focusing
structure (triplet or doublet, where the latter enhances the
resonant effect) will be studied in a forthcoming paper.

REFERENCES
[1] B.W. Montague, CERN-Report No. 68-38, CERN, 1968.

[2] I. Hofmann and G. Franchetti, Phys. Rev. ST Accel. Beams
9, 054202 (2006).

[3] S.Y. Lee, G. Franchetti, I. Hofmann, F. Wang and L. Yang,
New J. Phys. 8, No 11, 291 (2006).

[4] G. Franchetti, I. Hofmann, and G. Turchetti AIP Conf. Proc.
448, 233 (1998); ed. A.U. Luccio and W.T. Weng.

[5] E. Metral et. al., AIP Conf. Proc. 773, New York (ed. I. Hof-
mann et al.), 2004, p. 122

[6] I. Hofmann, Proc. of the Workshop on the Use of the Spalla-
tion Neutron Source for Heavy Ion Fusion Beam Dynamics
Studies, Rutherford Laboratories, U.K., p. 77 (1981)

[7] I. Hofmann, L.J. Laslett, L. Smith, I. Haber, Part. Acc. 13,
145 (1983).

[8] I. Hofmann, G. Franchetti and A. Fedotov, AIP Conference
Proceedings AIP-642, p. 248 (2002).

Proceedings of PAC07, Albuquerque, New Mexico, USA THPAN017

05 Beam Dynamics and Electromagnetic Fields

1-4244-0917-9/07/$25.00 c©2007 IEEE

D03 High Intensity - Incoherent Instabilities, Space Charge, Halos, Cooling

3261


