
TRANSVERSE SELF-CONSISTENT MODELING OF A 3D BUNCH IN
SIS100 WITH MICROMAP ∗

C. Benedetti† , S. Rambaldi, G. Turchetti, Dip. Fisica & INFN, Via Irnerio 46, 40126, Bologna, Italy
G. Franchetti, I. Hofmann, GSI, Planckstr.1, 64291, Darmstadt, Germany

Abstract

We present the upgrade of the MICROMAP beam dy-
namics simulation library to include a 2 1

2 D space charge
modeling of a 3D bunch using local slices in z. We dis-
cuss the parallelization technique, the performances, sev-
eral tests and comparison with existing well-established an-
alytical/numerical results in order to validate the code. An
application to the SIS100 synchrotron of the FAIR project
at GSI is outlined.

INTRODUCTION

The increasing interest in high-intensity beams for fu-
ture accelerators requires to improve our understanding of
the behaviour of a high intensity beam in a real accelerator
where both lattice nonlinearities and space charge (SC) ef-
fects need to be taken into account in order to provide an
accurate description of the system[1]. In particular beam
loss prediction and control is a key issue for the new gener-
ation of high-intensity heavy ion rings, such as the SIS100
synchrotron of the FAIR project. Even if the basic mech-
anisms of beam loss related to the interplay between SC,
external nonlinearities and the synchrotron motion can be
studied by using simplified particle-core models[2], a com-
plete (numerical) fully self consistent approach is required.
This study can be undertaken by using 3D PIC codes. How-
ever, even with present computer capabilities, the use of a
3D Poisson solver1 to compute the electrostatic force acting
on a particle inside a long and thin bunch in a synchrotron
is extremely demanding in term of memory and CPU time
and, as far as transverse dynamics is concerned, its usage is
even unnecessary. If we consider a bunch whose transver-
sal dimension is much smaller compared to its length, then
the longitudinal component of the electrostatic field can be
neglected compared to the transverse one[3]. To compute
the latter we assume that locally the charge distribution
can be approximated by a coasting beam. We define few
(20÷30) longitudinal slices along the beam, then we collect
the charge density on each slice and we solve the Poisson
equation in two dimensions. The transverse electric field
acting on a particle is finally obtained by interpolating the
value of the field from two adjacent slices. This approach
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1All the SC calculations are performed in the bunch reference frame

where the field generated by the bunch can be considered purely electro-
static.

is commonly referred as the 2 1
2D approximation.

In this paper we present the new features of the MI-
CROMAP library (2 1

2D SC modules, parallelization). Af-
ter discussing the performances and the accuracy of the
code we consider a preliminary application to the SIS100.

UPGRADE OF MICROMAP

The standard MICROMAP library[4] is a suite of FOR-
TRAN routines organized into two levels. The first one
(single particle mode) performs the tracking of a particle in
an arbitrary lattice. Linear transport is carried out by sym-
plectic matrix composition. Nonlinear elements, described
in the thin lens approximation, are modeled by symplectic
maps. The second level (multiparticle 2D mode) is nested
on the first one and performs the tracking of a multiparti-
cle beam including the SC forces in the 2D approximation.
The solver for space charge calculations is a spectral Pois-
son Solver with Dirichelet boundary conditions (φ = 0) on
a square box or on an arbitrary closed domain describing
the beam pipe. Static tests on the accuracy of the 2D solver
are discussed in[5].

New space charge modules

A new modality devoted to the SC calculations for a
bunched beam in the 2 1

2D approximation has been added.
One of the key issue in this approximation is the location
of the longitudinal slices and, consequently, the positioning
of the (transverse) 2D computational grids along the beam.
In this respect, we have chosen to place most of the com-
putational grids close to the bunch center, “tuning” their
position according to the longitudinal charge distribution,
in order to give a good description of the SC forces in the
region where they are more intense. This solution is func-
tional in the case of an AG lattice where we need to resolve
the variation of the beam envelope (and consequently the
one of the SC forces) through the lattice. This is the default
option. The user can easily define and use its own position-
ing routine. Concerning the charge deposition scheme and
the interpolation of the electric field from the grid nodes to
particle position, new algorithms based on quadratic shape
functions have been added besides the standard linear in-
terpolation (linear shape function). The smoothness prop-
erties of the quadratic shape function, involving three grid
points in the interpolation procedure, helps the reduction of
the noise in the electrostatic field evaluation (see the section
on the single particle tune tests for a comparison).
Together with the self consistent SC module also a frozen
and a semi-frozen SC module for the 2 1

2D calculations
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have been introduced. In the former the semiaxes of the
charge distribution are determined directly from the local
values of the beta functions and from the emittances. The
electric field is computed analytically (KV, WB) or numer-
ically (for Gaussian or another arbitrary distribution) by
using Gaussian integration ensuring an adequate accuracy
with few integration points. The latter is an extension of the
first one where the semiaxes and, if necessary, the tilt angle
of the beam section in each slice are determined from the
second order moments of the actual particle distribution.

Parallelization

Meaningful self-consistent 3D PIC simulations require
at least Npart ∼ 106 numerical particles, in order to have
low statistical errors[6], so the parallelization of the code
is a must. The parallelization is performed by decompos-
ing the bunched beam into longitudinal computational do-
mains, each one containing∼ Npart/nproc particles, nproc

being the number of available processors (procs). The end
points of each domain are obtained looking at the actual
longitudinal cumulative distribution function for the par-
ticles. The domains are dynamically and automatically
modified in order to keep a good load-balance between the
procs. At every time step the following operations are per-
formed in parallel: 1. charge deposition in all the slices per-
taining to a given proc2; 2. computation of the transverse
electric field on all the slices by solving the Poisson equa-
tion in 2D; 3. evaluation of the electric field acting on each
particle by linearly interpolating the value of the field from
two adjacent slices; 4. tracking of the particles through the
external lattice. 5. particles exchange between procs be-
cause of the synchrotron motion. Since this migration is
slow the number of particles to exchange at each time step
is small compared to the total number of particles. The par-
allel framework in MICROMAP, managed with MPI[7], is
almost transparent for the user, few routines control all par-
allel operations (longitudinal “chopping” of the beam, data
collection from different procs, test particles management).

PERFORMANCES

In figure 1 we show the time needed (in microseconds)
for one particle push3 multiplied per nproc as a function of
nproc for two different sizes of the grid of the 2D Poisson
solver. The tests have been run on a Linux cluster with
CPUs Intel Xeon (32 bits) 2.8 GHz. The speedup is close
to the ideal one. The results (obtained for Npart = 106,
Nslices = 25) are weakly dependent on Npart and Nslices.

2Particles belonging to the same longitudinal slice can be managed by
different procs, a data reduction between neighbouring procs is required
in order to get the correct value of the charge density on each slice.

3The particle push includes one space charge kick and one tracking
step through a simple constant focusing lattice.
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Figure 1: Time for one particle push multiplied per nproc

as a function of nproc for two different sizes of the grid of
the Poisson solver. See the text for details.

TESTS ON SINGLE PARTICLE TUNE

The adequate numerical description of phenomena such
as resonant halo, particles trapping/detrapping requires
a correct representation of the single particle dynamics
which is characterized by the single particle tune (SPT). We
have computed the tunes for a set of test particles in several
controlled simulations, comparing the results with analyt-
ical results. In all the simulations we have taken a sym-
metric constant focusing channel (Qx0 = Qy0 = 1.655,
Lring = 104 m. The bunch (U 73+, Nbunch = 109

ions/bunch, Einj = 11.4 MeV/u) has a longitudinal Gaus-
sian profile (σz = 10 m), the transversal r.m.s. emittances
are εx = εy = 10 mm mrad, several transverse distribu-
tions have been considered. In all the simulations we have
Npart = 106, for the grid we take (256 × 256) × 25 and
we use 37 SC kicks per betatron wavelength.
Static tests. We first consider a case without synchrotron
motion in order to investigate solely the correctness of the
interpolation procedure. In figure 2 we show the longi-
tudinal (left) and the transverse (right) behaviour of SPT
for Gaussian, WB and KV transverse distribution. Black
curves are the theoretical predictions. The tunes are in-
ferred by taking the FFT. The agreement with theoretical
values is very good.
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Figure 2: Longitudinal (left) and transversal (right) be-
haviour of the tune without synchrotron motion.

Dynamic tests. We consider now the synchrotron motion
taking Tsync = 2000 turns. In this case a test particle
initially far from the bunch center (i.e. far from the syn-
chronous particle) will explore regions of the beam with
different space charge. We have inferred the “instantaneous
tune” of the test particle by taking the turn by turn phase ad-
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vance. In figure 3 (left) we show the typical behaviour of
the SPT for one particle that at the beginning of the sim-
ulation is in zp − zsync = −40 m. After 1000 turns it
reaches the head of the bunch. Because of the statistical
fluctuations of the density, the tune is, in general, different
from the theoretical value (black curve). The red and cyan
plots refer to simulations performed respectively with lin-
ear shape and quadratic shape functions in the interpolation
process. The reduction of the fluctuation in the second case
is evident. We have also verified if the noise level in the
SPT is consistent with the theoretical one (no systematic
effects related to synchrotron motion, tracking or interpo-
lation). In this respect we have taken a set of 100 test par-
ticles with the same amplitude for the synchrotron motion
but different initial phases. We have then computed the av-
erage value and the r.m.s. spread of the tune as a function
of the longitudinal position. Results are shown in 3 (right).
The average value (red solid) is well interpolated by the
theoretical curve (black solid), also the amplitude fluctua-
tion (red dashed) is fully consistent with the expected one
(black dashed). Similar tests have been done with different
transverse distribution (KV, WB). In all cases the results
were good.
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Figure 3: Left: SPT for one particle with linear (red) and
quadratic (blue) shape functions. Right: average value
(solid line) and r.m.s. spread (dashed line) of the SPT.

APPLICATION TO THE SIS100

We outline here a first application of MICROMAP
(2 1

2D) to a relevant case which is of concern about the
problem of beam losses in SIS100. We consider a bunched
beam with sharp edge (WB transverse profile) injected
from the SIS18 into the bucket of the SIS100. We as-
sume that the injection causes a moderate (∼ 5%) trans-
verse mismatch. As a preliminary fully self-consistent
study we consider a simplified version of the SIS100 lat-
tice where all nonlinearities are removed. In the working
point we have chosen the bare tunes are Qx0 = 18.83,
Qy0 = 18.73. The bunch (U 28+, Nbunch = 7.5 · 1010

ions/bunch, Einj = 200 MeV/u) has a longitudinal Gaus-
sian profile with σz = 27 m, the initial edge emittances
are εx/εy = 35/14 mm mrad. The maximum tune shifts
are ΔQx � −0.12, ΔQy � −0.2. We also consider the
synchrotron motion taking Tsync = 1000 turns. In the sim-
ulation we set Npart = 106, Nslices = 29 and we use 399

SC kicks/turn. In figure 4 (left) we show the behaviour of
the r.m.s. amplitudes of the beam. Because of the mix-
ing effect of the synchrotron motion and, secondly, of the
space charge, the mismatch oscillations are damped on a
time scale of ∼ 100 turns. In figure 4 (right) we plot the
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Figure 4: Left: behaviour of the r.m.s. amplitudes in the
case study. Right: maximum distance along the x-axis
reached by the particles with (red) and without (black) SC.

maximum distance (along the x-axis) reached by the parti-
cles in two simulations respectively with (red) and without
(black) SC. The larger distance reached by the particles in
the first case is due to the formation of a tail. The tail can be
easily recognized looking at the plot of the single particle
emittances (SPE), see figure 5 (left plot). Black points are
the SPEs at the beginning of the simulation, the red ones are
the emittances after 300 turns. In figure 5 (right plot) we
show the percentage of the particles in the halo as a func-
tion of the time, the asymptotic value is ∼ 0.3 %. We point
out that once we take into account lattice nonlinearities all
these particles are good candidates to be lost[8].
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Figure 5: Left: SPEs at the beginning (black) and after 300
turns (red). Right: percentage of particles in the halo.
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