
PROGRESS ON H5PART: A PORTABLE HIGH PERFORMANCE
PARALLEL DATA INTERFACE FOR ELECTROMAGNETICS

SIMULATIONS∗

A. Adelmann, A. Gsell, B. Oswald, T. Schietinger, PSI, Villigen, Switzerland
W. Bethel, J.M. Shalf, C. Siegerist, K. Stockinger, LBNL/NERSC, Berkeley, California, USA

Abstract
Significant problems facing all experimental and compu-

tational sciences arise from growing data size and complex-
ity. Common to all these problems is the need to perform
efficient data I/O on diverse computer architectures. In
our scientific application, the largest parallel particle sim-
ulations generate vast quantities of six-dimensional data.
Such a simulation run produces data for an aggregate data
size up to several TB per run. Motived by the need to ad-
dress data I/O and access challenges, we have implemented
H5Part, an open source data I/O API that simplifies the
use of the Hierarchical Data Format v5 library (HDF5).
HDF5 is an industry standard for high performance, cross-
platform data storage and retrieval that runs on all con-
temporary architectures from large parallel supercomput-
ers to laptops. H5Part, which is oriented to the needs of
the particle physics and cosmology communities, provides
support for parallel storage and retrieval of particles, struc-
tured and in the future unstructured meshes. In this paper,
we describe recent work focusing on I/O support for parti-
cles and structured meshes and provide data showing per-
formance on modern supercomputer architectures like the
IBM POWER 5.

MOTIVATION
Modern large-scale parallel simulations produce data

volumes that are on the orders of TBs. One of the main
challenges is how to access this data efficiently and how to
share it among scientists of specific communities. In order
to address these problems we have developed H5Part [1], a
high-performance data API that is particularly targeted for
the accelerator modeling community.

H5Part uses HDF5 [2] as the underlying storage for-
mat which has the following benefits: 1) Machine inde-
pendence: No byte-swapping is necessary for accessing
binary data created on different machines. 2) Language
independence: Data can, for instance, be written using
the Fortran API and read using the C/C++ API. 3) Self-
describing: Data is accessed by names rather than position.
For instance, read the values of the dataset px. 4) High-
performance: Data is stored in native binary format and is
only automatically translated if the machine that reads the
data requires a different format. 5) Parallel I/O: Data is
written in parallel into a single file using MPI-I/O.

∗This work was supported by the Director, Office of Science, Office
of Advanced Scientific Computing Research, of the U.S. Department of
Energy under Contract No. DE-AC03-76SF00098

DATA MODELS IN H5PART
H5Part supports two types of data models. One

model (H5Part) stores time varying unstructured datasets
with multiple variables per datum; The other model
(H5Block) stores multidimensional, timevarying block-
structured fields. Both data models support parallel read-
ing and writing of the respective data. We will now explain
these two data models in more detail.

H5Part: Particle Data
The data model for particle data allows storing multiple

timesteps where each timestep can contain several datasets
of the same length. By definition, each timestep must have
the same number of datasets. Typical particle data con-
sists of the 3-dimensional Cartesian positions of particles
(x, y, z) as well as the corresponding 3-dimensional mo-
menta (px, py, pz). These 6 variables are stored as 6 HDF5
datasets. The type of the dataset can be either integer or
real. H5Part also allows storing attribute information for
the file and the timesteps.
A simplified pseudo code for storing particle data with n
timesteps is shown below. Note that if a file is opened in
parallel, the data is partitioned and written in parallel based
on the number of particles.

if(not parallel);
filehandle=OpenFile(filename,mode)

else
filehandle=OpenFile(filename,mode,mpicomm)

SetNumberOfParticles(filehandle);
loop(step=1,NSteps);

compute data
SetStep(filehandle,step);
WriteData(filehandle,fieldname1,data1);

...
WriteData(filehandle,fieldname<n>,data<n>);

CloseFile(filehandle);

The internal HDF5 file structure of the above example
with 2 timesteps is as follows:
GROUP "/" {

GROUP "Step#0" {

DATASET "px" {

DATATYPE H5T_IEEE_F64LE

DATASPACE SIMPLE { (1000) / (1000) }

}

DATASET "py" {

DATATYPE H5T_IEEE_F64LE

DATASPACE SIMPLE { (1000) / (1000) }

}

DATASET "pz" {

DATATYPE H5T_IEEE_F64LE

DATASPACE SIMPLE { (1000) / (1000) }

}

DATASET "x" {

DATATYPE H5T_IEEE_F64LE

DATASPACE SIMPLE { (1000) / (1000) }

}

DATASET "y" {

DATATYPE H5T_IEEE_F64LE

THPAN076 Proceedings of PAC07, Albuquerque, New Mexico, USA

05 Beam Dynamics and Electromagnetic Fields

3396

D05 Code Developments and Simulation Techniques

1-4244-0917-9/07/$25.00 c©2007 IEEE

DATASPACE SIMPLE { (1000) / (1000) }

}

DATASET "z" {

DATATYPE H5T_IEEE_F64LE

DATASPACE SIMPLE { (1000) / (1000) }

}

}

GROUP "Step#1" {

... same information as in Step#0

}

}

H5Block: Block-Structured Data
H5Block inherits all features of H5Part such as multi-

ple timesteps, file and timestep attributes etc. but also sup-
ports scalar fields and vector fields. Examples of these two
types of data are the potential and electrical field of a par-
ticle simulation. Since H5Block stores multidimensional
datasets, the data partition strategy among the processors
must be specified explicitly for each data dimension. Find
below the pseudo code for partitioning a 3D scalar field
with dimensionality 16, 16, 128 among two processors:

fh=OpenFile(filename,mode)
if processor 0
Define3DFieldLayout(fh, 0, 15, 0, 15, 0, 63);

else
Define3DFieldLayout(fh, 0, 15, 0, 15, 64, 127);

Write3DScalarField(fh,fieldname1,data1);
CloseFile(fh);

Below we show the internal HDF5 file structure of
H5Block. Note that the 3D scalar field potential is stored
as one 3-dimensional data set. On the other hand, the 3D
vector field electrical field is stored as three 3-dimensional
datasets.

GROUP "Block" {

GROUP "Potential" {

DATASET "0" {

DATATYPE H5T_IEEE_F64LE

DATASPACE SIMPLE { (128, 16, 16) / (128, 16, 16) }

}

}

GROUP "Electrical Field" {

DATASET "0" {

DATATYPE H5T_IEEE_F64LE

DATASPACE SIMPLE { (128, 16, 16) / (128, 16, 16) }

}

DATASET "1" {

DATATYPE H5T_IEEE_F64LE

DATASPACE SIMPLE { (128, 16, 16) / (128, 16, 16) }

}

DATASET "2" {

DATATYPE H5T_IEEE_F64LE

DATASPACE SIMPLE { (128, 16, 16) / (128, 16, 16) }

}

}

DATA MINING AND VISUALIZATION
Massive parallel applications in science generally scale

at least linearly with the number of processors. The bal-
ance between generation of data and the capability to
(post)process i.e. analyze them is of increasing importance.
Data that cannot be looked at in an acceptable time frame
are essentially lost.

Data Visualization with VisIt
VisIt [6] is an open source scientific visualization ap-

plication that supports most of the common visualization
techniques on structured and unstructured grids. One of
its advantages is that it employs a distributed and parallel

architecture in order to handle extremely large data sets in-
teractively.

We have developed plugins for reading and visualizing
both particle and field data. Figure 1 shows a visualization
of the scalar field “potential” and the particle data “px” for
timesteps 3 and 42 of our simulation data.

Figure 1: Visit is able to read and visualize H5Part data.
Windows 1 (top left) and 3 (top right) display the scalar
field “potential” for the timesteps 3 and 42. Windows 2
(bottom left) and 4 (bottom right) display the particle data
“px” for the same timesteps.

H5PartROOT
H5PartROOT is a tool to visualize large data files pro-

duced with the H5Part interface to HDF5. It is based on the
ROOT framework for data analysis [5] developed at CERN.
The main Graphical User Interface (GUI) allows conve-
nient navigation between time steps and between several
datafiles for quick comparisons at the click of a mouse. The
basic functionality of the tool ranges from plotting one-,
two-, and three-dimensional particle distributions to line
plots of step attributes such as emittance (projected, slice
and screen), rms beam size and centroid position, which
are either read in directly from the datafile or reconstructed
from the particle distribution at the current time step. More
sophisticated fitting procedures and moment determination
are available via the corresponding ROOT classes.

The H5PartROOT software essentially consists of two
classes, which both inherit from ROOT classes to ensure
access to the full range of features provided by the ROOT
framework, for both interactive sessions and compiled and
linked executables. The first class creates the main GUI,
the second one stores the data of one HDF5 datafile lo-
cally in ROOT-native data containers and supplies various
methods to retrieve, plot and manipulate the data. The
methods of the data class are connected to the GUI via the
so-called signal/slot mechanism, a technique originally de-
signed for the Qt toolkit and recently adopted by ROOT.
While H5PartROOT provides a stand-alone executable,
which launches a GUI ready for use, the H5PartROOT

Proceedings of PAC07, Albuquerque, New Mexico, USA THPAN076

05 Beam Dynamics and Electromagnetic Fields

1-4244-0917-9/07/$25.00 c©2007 IEEE

D05 Code Developments and Simulation Techniques

3397

classes may also be linked as a shared library to a standard
ROOT session. This allows a user to take advantage of the
full H5PartROOT functionality from within ROOT interac-
tive sessions or macros. Figure 2 shows a screenshot of a
typical H5PartROOT session.

Figure 2: A snapshot of the H5PartROOT Graphical User
Interface.

PERFORMANCE
In this section we will analyze the performance of

H5Part and compare the results with MPI-I/O. All exper-
iments are executed on an IBM p575 POWER 5 system
using up to 8 nodes, where each node consists of 8 CPUs.
In total, the benchmarks were run on 8 to 64 CPUs using
the GPFS filesystem. One of the major tuning parameters
of H5Part is whether to choose collective or non-collective
I/O. In order to answer the question, we ran a large set of
performance measurements based on the IOR-benchmark
[3]. We have chosen the IOR benchmark since it allows
one to study the performance of applications with differ-
ent access patterns. These performance results suggest
that non-collective I/O is significantly faster than collec-
tive I/O for the H5Part specific access pattern where the
data sets are evenly partitioned among the parallel proces-
sors. Hence, all our performance benchmarks are based on
non-collective I/O.

In our first set of benchmarks we used 108 particles with
6 attributes and 5 timesteps. In total, these experiments
write some 24 GB of data. Figure 3 (left) shows the perfor-
mance of H5Part, MPI-I/O and POSIX-file I/O using be-
tween 8 and 64 CPUs. Note that H5Part and MPI-I/O write
a single large file whereas POSIX-I/O writes one file per
processor. The results demonstrate that H5Part shows sim-
ilar performance to MPI-I/O. This result confirms that use
of H5Part does not introduce any significant performance

overhead compared to direct use of MPI-I/O. We also see
that POSIX-file I/O scales nearly linearly with the number
of processors. As part of our future work we will investi-
gate additional performance tuning possibilities of H5Part
and MPI-I/O.

Figure 3: Performance of H5Part compared with POSIX
and MPI-I/O, where the total size of the written data is con-
stant (left plot), or increases with the number of processors
(right plot).

In our next set of experiments we increased the data size
with the number of processors. In other words, we in-
creased the problem size as we increased the number of
processors. Again, we used 108 particles with 6 attributes
but we varied the number of timesteps between 4 and 32
for 8 to 64 CPUs. In total, the amount of data that is writ-
ten is between 19 and 152 Gigabytes. The results of Fig. 3
(right) demonstrate the similar performance of H5Part and
MPI-I/O.

The performance results show that H5Part is capable of
writing extremely large files showing good performance.
The advantage of writing one large file in parallel over writ-
ing many smaller files is better usability. Managing one file
is clearly simpler than managing a large set of files.

CONCLUSIONS AND FUTURE WORK
We are currently working on integrating the FastBit

bitmap indexing technology [4] for accelerating queries of
data stored in H5Part. An example of such a query is (px
> 1.34) AND (potential < 2e7). A formal definition of an
API for unstructured finite element data has been written,
the implementation will start this summer.

REFERENCES
[1] A. Adelmann, R.D Ryne, C. J. Shalf, Siegerist, “H5Part: A

Portable High Performance Parallel Data Interface for Parti-
cle Simulations”, PAC 2005.

[2] HDF5 Home Page, http://hdf.ncsa.uiuc.edu/HDF5.
[3] Interleaved or Random (IOR) benchmarks. http://www.

llnl.gov/icc/lc/siop/downloads/download.html

[4] L. Gosink, J. Shalf, K. Stockinger, K. Wu, W. Bethel, “HDF5-
FastQuery: Accelerating Complex Queries on HDF Datasets
using Fast Bitmap Indices”, SSDBM 2006.

[5] ROOT – an Object-Oriented Data Analysis Framework,
http://root.cern.ch/.

[6] VisIt – a free interactive parallel visualization and graphical
analysis tool, http://www.llnl.gov/visit/.

THPAN076 Proceedings of PAC07, Albuquerque, New Mexico, USA

05 Beam Dynamics and Electromagnetic Fields

3398

D05 Code Developments and Simulation Techniques

1-4244-0917-9/07/$25.00 c2007 IEEE

