
CHEF: A STATUS REPORT∗

J.-F. Ostiguy and L. Michelotti
Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

Abstract

CHEF refers both to a framework and to an interac-
tive application emphasizing accelerator optics calcula-
tions. The framework supports multiple domains of ap-
plications: e.g. nonlinear analysis, perturbation theory, and
tracking. Its underlying philosophy is to provide an infras-
tructure with minimum hidden implicit assumptions, gen-
eral enough to facilitate both routine and specialized com-
putational tasks, and to minimize the duplication of neces-
sary, complex bookkeeping tasks. CHEF was already de-
scribed in recent conferences [1, 2]. This paper is a status
report on recent developments, including issues related to
applications to high energy linacs.

INTRODUCTION

CHEF is a hierarchical framework, implemented in C++,
that has its roots in libraries developed at Fermilab through-
out the 1990s. Just like COSY [3], FPP [4] and a few
other codes, it uses as a foundation layer, an automatic dif-
ferentiation engine (mxyzptlk, in this case). This design
allows CHEF to provide unified support for conventional
first order optics and higher order computations. Algo-
rithms which in traditional codes are formulated in terms
of matrices are instead, expressed in terms of Mappings.
Passage through an element transforms a particle’s phase
space state: in a conventional optics code, the transfer ma-
trix entries can be interpreted as the first order derivatives
of this transformation. In CHEF, the transformation is rep-
resented by a Mapping, implemented as a vector of Jet
objects. Each Jet component defines a series expansion
which describes the transformation undergone by one of
the coordinates, up to some specified order. A first order
Mapping and a traditional transfer matrix contain equiva-
lent information; however, Mapping is a more general ab-
straction.

A substantial fraction of the complexity in an acceler-
ator code has to do with bookkeeping tasks. One of the
objectives of CHEF is to provide components that enable
accelerator scientists to either build or add new features
to applications without having to become too involved in
such tasks. With that in mind, CHEF provides facili-
ties to manipulate, transform, edit and display hierarchi-
cal beamlines, parse lattice files and perform a variety of
standard calculations. Although originally geared towards
synchrotrons, interest in issues associated with the Interna-
tional Linear Collider have motivated extensions to exist-

∗Work supported by Fermi Research Alliance, LLC under Contract
No. DE-AC02-07CH11359 with the United States Department of Energy.

ing functionality and development of new capabilities. We
discuss some recent developments.

XSIF PARSER

For a few years now, CHEF has had the ability of read-
ing lattice descriptions in MAD8 format. The parser had a
few limitations, the most important being not being able to
process macro statements. To exchange lattice information,
the ILC collaboration has officially settled on the XSIF for-
mat (MAD8 augmented with linac-specific extensions). In
order to be usable as a tool to investigate ILC issues, CHEF
needed to deal with those files in unmodified form. A new
XSIF parser has therefore been implemented.

The new parser is based on the standard flex/bison
token analyzer/parser generator combination. In contrast
with their close cousins lex and yacc which are meant to
be used in a C programming environment. flex and bison
provide support for C++ constructs; this was taken advan-
tage of. The parser is fully re-entrant and recognizes all
the elements types and attributes of the XSIF specification,
variable expressions (either immediate or deferred) as well
as arbitrarily nested macros and include files. Currently, it
handles all officially released ILC files.

While development was in progress, we became aware
of an effort to develop a “universal” XSIF parser, using
XML as a intermediate lattice exchange format [5]. Un-
fortunately, it was not ready for use on a time scale com-
patible with our needs. This said, experience shows that
decoupling the parser from the internals of an accelerator
code is a task that is easily underestimated.

BEAMLINES

Typically, beamlines are specified in a hierarchical man-
ner, that is, beamlines are comprised of building blocks i.e.
standard groups of elements responsible for certain specific
functions e.g. a regular cell in a periodic focusing structure,
a dispersion suppressor, a zero dispersion insertion, a low
beta insertion, etc. A designer often starts with a periodic
structure and gradually introduces various local modifica-
tions.

Beamlines are recursive structures, in the sense that a
beamline is a container that may contain either atomic ele-
ments or other beamline containers. CHEF provides exten-
sive facilities to manipulate, edit and transform hierarchical
beamlines. Internally, a beamline is implemented as a tree
where sibling nodes are stored in doubly-linked lists. Orig-
inally, the lists were custom containers of raw pointers to
elements. This resulted in significant complexity, due in

THPAN112 Proceedings of PAC07, Albuquerque, New Mexico, USA

05 Beam Dynamics and Electromagnetic Fields

3486

D05 Code Developments and Simulation Techniques

1-4244-0917-9/07/$25.00 c©2007 IEEE

part to pointer ownership ambiguity. Consider for example
a function that removes elements from a beamline. Who
owns these elements and who is responsible for deleting
them? When is it safe to delete them? Although consistent
function behavior with respect to object ownership helps,
in practice some rules are violated –not necessarily con-
sciously – resulting in subtle and unexpected side-effects.
Ultimately the code becomes brittle and increasingly hard
to maintain.

To alleviate these issues, CHEF was re-factored to
take maximum advantage of STL containers and algo-
rithms. To address pointer ownership issues, at each
level of a beamline tree, sibling nodes are now stored
in a std::dlist of tr1::shared ptr (a reference-
counted shared pointer with value semantics). Fur-
ther, the beamline class has been endowed with itera-
tors that fully model the STL reversible iterator concept:
iterator (single level), pre order iterator (depth-
first order), post order iterator (breath-first order),
deep iterator (iterates recursively through elements
only). All iterators are also available in the reverse and
const varieties for a total of sixteen distinct iterator types.
Aside from the fact that this provides a familiar and consis-
tent interface, using STL compatible iterators has the dis-
tinct advantage of making STL implementation of standard
algorithms automatically available for beamline containers.

CHEF makes a large fraction of its interface available
to python scripts through bindings based on boost::python,
a compile-time template metaprogram bindings generator.
boost:python provides standard infrastructure to map STL
compliant iterators into native python iterators with mini-
mal effort.

PARTICLE BUNCHES

Emittance preservation studies imply a capability to
propagate particle bunches. While such capability has ex-
isted in CHEF for some time, it was rudimentary and not
designed to be efficient in the context of large scale emit-
tance preservation studies involving statistical studies of
misalignment, ground motion and so forth.

The existing ParticleBunch class has been im-
proved. A ParticleBunch acts as container for (abstract)
Particle objects. It can be populated, based on stan-
dard beam parameters, according to different standard sta-
tistical distributions. The implementation is based on a
boost::ptr vector container. This container behaves
like a standard std::vector container, with some inter-
esting distinctions. In contrast with a standard container, it
is designed to hold exclusively owned raw pointers to dy-
namically allocated Particle objects, rather than the ob-
jects themselves. Nevertheless, its iterators, when derefer-
enced, return references to the actual objects, not pointers.
One important consequence of holding pointers is that mu-
tating algorithms, in particular sorting, can be performed
much more efficiently since it is more efficient to re-order
pointers to objects rather that the objects themselves.

Since propagating a bunch through a sequence of accel-
erator components involves repeatedly and on a very large
scale, iterating through all particles contained in a bunch,
locality of Particle object references is important to en-
sure good performance. For this reason, Particle objects
are sequentially allocated in memory from a private pool
owned by each ParticleBunch object.

CHEF supports all the expected concrete particle types
i.e. Proton, Electron, Positron, etc. Each of these
types is derived from an abstract Particle type which
is never (and cannot be) explicitly instantiated. One con-
sequence of the design described above is that although a
ParticleBunch has no explicit knowledge of the concrete
type of the Particles it contains, the specific run-time
identities of Particles is preserved since they are not held
by value.

One important aspect of support for bunches is to pro-
vide facilities to generate macroscopic projections. The
need for such projections arises, for example, in the mod-
eling of beam diagnostic instruments. In the context of
high energy linacs, an important issue is the simulation of
wakefield effects as described in more detail below. For
the purpose of computing wakefields, a bunch is typically
described in terms of a longitudinal charge or transverse
dipole moment distribution. To obtain this distribution, it
is necessary to (1) sort particles according to their longi-
tudinal position (2) assign them to a finite number of lon-
gitudinal bins (3) for each bin, compute the relevant quan-
tity. In CHEF, this functionality is provided by an aux-
iliary BunchProjector helper class whose constructor is
passed a reference to a ParticleBunch. Instantiation of
a BunchProjector results in the bunch being sorted lon-
gitudinally and projections computed. It is worth pointing
out that in a high energy linac, while the longitudinal or-
dering of particles within a bunch is usually preserved, this
cannot be assumed to be always true (for example, after
going through a bunch compressor). To insure good per-
formance, the sorting algorithm should be able to handle
nearly ordered bunches efficiently.

WAKEFIELDS

Emittance preservation is a critical issue in linear col-
liders. Wakefields – the electromagnetic fields induced by
the reaction of the environment to the beam while it passes
through accelerator elements and, in particular, accelerat-
ing cavities – contribute significantly to emittance growth.
It is convenient to consider separately two kinds of wake-
fields: (1) long range wakefields, the fields induced by
downstream bunches and (2) short-range wakes, the fields
induced by the particles within a given bunch and acting
back on it. Modeling either kind of wake involves similar
techniques; the differences lie in the level of detail needed
to describe a bunch and the need to keep track of previous
history. In simulations involving a superconducting linac,
long range wakes are often omitted from simulations be-
cause they arise from high order accelerating cavity modes

Proceedings of PAC07, Albuquerque, New Mexico, USA THPAN112

05 Beam Dynamics and Electromagnetic Fields

1-4244-0917-9/07/$25.00 c©2007 IEEE

D05 Code Developments and Simulation Techniques

3487

which are extracted and damped with special absorbers.
Short range wakes, on the other hand, cannot be neglected.

Assuming cylindrical symmetry, it can be shown the net
impulse on a point particle located at a position z within
a bunch involves evaluating a convolution integral of the
form

Δp(z) =
∫ ∞

−∞
W (z − z′)g(z′)dz′ (1)

where g(z) represents some suitable longitudinal density.
Assuming that g(z) and the wake W (z) are discretized
over N intervals, numerical integration of the above in-
volves O(N 2) operations. While straightforward to imple-
ment, naive numerical integration is an inefficient way of
computing a convolution. Since a high energy linac such as
the proposed ILC would be comprised of 103 accelerating
structures, wakefield computations become a bottleneck in
the context of dynamic or statistical studies.

By taking advantage of the fact that convolution is equiv-
alent to a multiplication in Fourier space the integral in
Equation 1 can be computed in O(N log N) operations us-
ing FFTs. This approach was adopted for the implementa-
tion of short-range wakefields in CHEF.

It is important to note that the FFT of g(z) is not the
Fourier transform of g; rather, it is the Fourier transform of
the periodic extension of g. In practice both g(z) and W (z)
are non-zero over finite intervals. No aliasing error will
be introduced provided that sampling is performed over an
interval which, at minimum, is equal to twice the maximum
of the supports of g and W .

Internally, CHEF provides an element (WakeKick), that
acts exclusively on bunches. While this element can in
principle be used as a standalone element, it is meant to
be used as a building block for more complex compos-
ite elements. For example, a linear accelerator supercon-
ducting structure is implemented as a sequence of two sub-
structures with a WakeKick element inserted in the middle.
Wakes can be described either analytically or in table form.
Note that for the duration of a simulation, the wake W (z)
remains unchanged. To take advantage of this fact and
avoid repeatedtly computing the same wake FFT, convo-
lution is implemented as a stateful ConvolutionFunctor
function object with shared semantics. Concretely, this
means that once a WakeKick element is instantiated for
a particular wake, it can be copied multiple times and
each instance will automatically share a single copy of the
ConvolutionFunctor implementation. Cavities not re-
quired to share the same wake.

DISPERSION COMPUTATIONS

Since CHEF contains an automatic differentiation en-
gine, the infrastructure is available to compute dispersion
accurately without the need to resort to explicit finite dif-
ferencing. Nevertheless, until recently, dispersion in CHEF
was computed conventionally, that is, by computing the dif-
ference between the trajectories of tracking two particles
separated in momentum by some small amount dp/p and

by taking the difference between trajectories. CHEF can
now compute dispersion directly using JetParticles.

In the case of a linac, the implementation is straightfor-
ward: a JetParticle with suitable initial conditions is
propagated: the dispersion is automatically available as the
term correponding to the first order derivative with respect
to the state variable dp/p0. For a ring, the situation is some-
what more complex, because the dispersion now represents
the change in periodic orbit associated with a change in
momentum. The algorithm involves iteratively solving for
a periodic orbit in Jet space.

Aside from the fact that the computation is accurate to
machine precision, all coupling terms are also immediately
available. Finally, if desired, the dispersion can be obtained
to any specified order.

PERFORMANCE

Unification of first order optics and higher order com-
putations comes at a cost. Generality implies increased
code complexity and tends to lead to lower performance:
software with a narrower scope can rely on a-priori sim-
plifying assumptions. Following a substantial overhaul
of mxyzpltk, the automatic differentiation engine, over-
all performance for standard first order computations now
compares very favorably to matrix-based codes. The de-
tails are the object of a companion report [6].

CONCLUSION AND FUTURE PLANS

Interest in simulating high energy linacs has and con-
tinues to stimulate development of CHEF. In the near fu-
ture, we plan to add a capability to model undulators such
as those envisioned in the ILC polarized positron source
and study their impact on emittance preservation. We
also expect to continue optimizing performance to facili-
tate large scale parametric studies involving misaligments
and ground motion.

REFERENCES

[1] L. Michelotti, J.-F. Ostiguy, “CHEF: An Interactive Pro-
gram for Accelerator Optics Calculations”, Proc. PAC, p 988
(2005).

[2] J.-F. Ostiguy, L. Michelotti, “CHEF: An Interactive Program
for Accelerator Optics Calculations”, Proc. ICAP 2006, Cha-
monix, France.

[3] Makino, M. Berz, COSY Infinity, Version 9, Nuclear Instru-
ments and Methods A558 (2005), pp. 346-350.

[4] E. Forest, F. Schmidt, “The Full Polymorphic Package” ,
ACM SIGPLAN Fortran Forum, 20,3 (December 2001).

[5] D. Sagan, D.A. Bates and A. Wolski, “The Universal Accel-
erator Parser”, Proc. ICAP 2006, Chamonix, France.

[6] J.-F. Ostiguy, L. Michelotti, “Mxyzptlk: An efficient, Native
C++ Automatic Differentiation Engine”, this conference.

THPAN112 Proceedings of PAC07, Albuquerque, New Mexico, USA

05 Beam Dynamics and Electromagnetic Fields

3488

D05 Code Developments and Simulation Techniques

1-4244-0917-9/07/$25.00 c©2007 IEEE

