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Abstract
The Kapchinskij-Vladimirskij equations describe the

evolution of the beam envelopes in a periodic system of
quadrupole focusing cells and are widely used to help pre-
dict the performance of such systems. Being nonlinear,
they are usually solved by numerical integration. There
have been numerous papers describing approximate solu-
tions with varying degrees of accuracy. We have found
an exact solution for a matched beam in the limit of zero
space charge. The model is FODO with a full occupancy,
piecewise-constant focusing function. Our explicit result
for the envelope a(z) is exact for phase advances up to
180◦ and all other values except multiples of 180◦. The
peak envelope size is minimized at 90◦. The higher sta-
ble bands require large, very accurate, field strengths while
producing significantly larger envelope excursions.

INTRODUCTION
This paper treats a problem discussed by Courant and

Snyder in their classic paper [1], except that we assume
a straight rather than circular machine. They discussed
the case in which the focus and defocus sections each had
uniform focusing strength with no intervening gaps. They
called this the CLS model. The model assumed negligible
space charge density.

Courant and Snyder gave an explicit criterion for beam
stability for the CLS model and obtained an approximate
solution for the envelope. Here, we show that the CLS
model is exactly solvable and explore the consequences.
(Lund and Bukh [2] have given an exact analysis for the
opposite case: thin lenses with maximum space-charge in-
tensity.)

For the CLS model: (1) We find that our solutions exist
in an infinite number of bands coinciding with the bands of
stability. (2) We obtain a well-defined expression for phase
advance σ as a function of focusing strength that applies to
all bands. All values are theoretically possible except exact
multiples of 180◦. (3) For fixed emittance, the peak beam
radius is minimized at σ = 90◦, increasing rapidly past
that point. The higher bands give larger beam excursions in
spite of greatly increased focusing fields [2], [3]. Although
the minimum radius is reduced (cf. Ref. [4]), it is the peak
radius that is significant for transport systems of fixed aper-
ture. For such systems, in the emittance-dominated regime
at least, there seems to be no advantage in increasing the fo-
cusing strength much beyond the value that gives σ = 90◦.
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FOCUSING MODEL
We assume that the focusing strength K(z) is periodic

and piecewise constant with values±k over a lattice period
2L. This is the FD model—see Eqs. (1) and Fig. 1:

K(z) = +k, 0 < z < L; (1a)
K(z) = −k, L < z < 2L. (1b)
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Figure 1: FD model

We assume quadrupole symmetry such that x-plane
and y-plane behaviors are identical except for a shift of
length L [5], [6]; we will not consider the x-plane further.

SINGLE-PARTICLE STABILITY
In the low space-charge limit, the vertical position y(z)

of a particle is given by

y′′(z) + K(z)y(z) = 0, K(z + 2L) = K(z). (2)

The stability of y(z) is easily found from the period-
transfer matrix M [1], [7] and is given by |Tr(M)| < 2.
In the FD case this yields∣∣∣ cos

√
kL

∣∣∣ < sech
√

kL. (3)

Figure 2 shows that there are multiple bands of real so-
lutions over increasingly narrow ranges of

√
kL.

0

0.5

1

0 1 2 3

A

B

√kL/π
Figure 2: A = | cos

√
kL |; B = sech

√
kL. Stable solu-

tions exist in the regions where curve A is below curve B.

EXACT SOLUTION OF THE
ENVELOPE EQUATIONS

Without space charge, the y-plane envelope a(z) of a
beam with emittance ∈ is given by [7]:
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a(z)′′ + K(z)a− ∈
2

a3
= 0. (4)

Equation (4) could be directly integrated in terms of a2.
Instead, we use trial solutions, defining separate functions
for the focus (K > 0) and defocus (K < 0) sections:

a(z) =

{
a+(z) for 0 < z < L,

a−(z) for L < z < 2L.
(5)

Our trial solutions utilize the symmetry of K(z):

a+
2(z) = c+ + d+ cos λ(z − L/2), (6a)

a−
2(z) = c− + d− coshλ(z − 3L/2). (6b)

Substitution into Eq. (4) and matching of values and deriva-
tives of a+ and a− at the junctions determines the five un-
known constants. This gives the matched solution

a+
2(z) = ∈L

sn ch + sh cos[θ(2z/L− 1)]
P θ
√

1− cs2ch2
, (7a)

a−
2(z) = ∈L

sh cs + sn cosh[θ(2z/L− 3)]
P θ
√

1− cs2ch2
, (7b)

with λ = 2
√

k and

θ ≡
√

kL, sn ≡ sin θ, cs ≡ cos θ,

P ≡ sign(sn), sh ≡ sinh θ, ch ≡ cosh θ. (8)

(The detailed derivation of Eqs. (7)—half a page—will be
included in the full version of this paper.)

Figure 3 plots a(z)/
√
∈L for various focusing

strengths θ within the stable pass bands discussed below.
Equations (7) have real solutions (pass bands) when their
denominators are real. The existence criterion is

cs2ch2 < 1. (9)
This agrees with the stability criterion, Eq. (3), showing
that a solution is stable if it exists.

PASS-BAND DETAILS
The stable bands surround the points where cos θ = 0.

We call these the midpoints:

θn ≡ (n− 1
2 )π n = 1, 2, 3 · · · (10)

with n the pass-band number. The phase advance σ(θ) is
given below by Eq. (14), which shows that cos σ = 0 wher-
ever cos θ = 0. Therefore, σn = θn and σn = (n− 1

2 )π.
The narrow width of the pass bands beyond the first

(Fig. 2) facilitates an excellent approximation for the
widths when n > 1. For band n we write

θedge = θn + δn. (11)
Then, according to Eq. (3), the band edges satisfy∣∣ cos(θn + δn)

∣∣ = sech(θn + δn). (12)

Taylor expansion yields

θedge ' θn ±
1

cosh θn ± tanh θn
n > 1. (13)

For the upper edge of pass band 2, the σedge error is 10−5.
Eq. (13) quantifies the narrowing of the pass bands with n
that is seen in Fig. 2.
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Figure 3: Plots of Eqs. (7) for various focusing strengths
θ with fixed ∈: (a) θ=0.5π, midpoint of first stable band;
(b) θ=0.5968π, near band 1 edge; (c) θ=1.50561868π, near
band 2 edge; (d) θ=2.5π, band 3 midpoint. Peak radius is
smallest where σ = θ = 90◦ (cf. Figs. 5 and 6). Minimum
envelope a(z) can be very small but is always finite. In
band 2, a(z) and b(z) have minima at the same z values; in
case (c) there are huge reductions in beam area at z = L/2
and 3L/2.

Full-period phase advance
From Ref. [1], the phase advance σ(θ) for the FD case is

(assuming |cs ch| < 1),

cos σ = 1
2 TrM = cos θ cosh θ, (14)

which is ill-defined in the higher pass bands. Therefore we
write

∆θ ≡ θ − θn; ∆σ ≡ σ − θn, (15)

where −π
2 < ∆σ < π

2 and where ∆θ has a smaller range.
Equation (14) becomes

sin∆σ = sin∆θ cosh θ (16)

with | sin∆θ cosh θ| < 1. Then

σ(θ) = θn + sin−1(sin∆θ cosh θ). (17)

Here, sin−1 is restricted to the principal value, removing
the ambiguity in Eq. 14. Figure 4 displays σ(θ) for the first
two bands.

From Eq. (17) and Fig. 4 we see that, for any band n, σ
has maximum and minimum values

σmax = nπ, σmin = (n− 1)π. (18)

In all pass bands, σ ranges over 180◦, so that arbitrary σ
is possible except for the singular points σ = nπ. The
required precision of k becomes extreme near these points.
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Figure 4: (a) Phase advance [Eq. (17)] for the first two sta-
ble bands. (b) Second band again with the θ axis magnified.

MAXIMUM ENVELOPE EXCURSION
AND OTHER TOPICS

The peak radius amax is found from Eq. (7a) by setting
the cosine term (containing z) equal to P, yielding:

a+
2
max = ∈L

P sn ch + sh

θ
√

1− cs2ch2
. (19)

Figure 5 illustrates Eq. (19), showing amax/
√
∈L as a

function of θ for the first two stable bands. In Fig. 5(a), the
peak radius amax decreases as the field strength increases
up to the point where θ and σ reach 90◦. Further increase of
θ causes a rapid increase in the peak radius, which diverges
as σ approaches 180◦. In the second band, the peak radius
has a minimum value where θ and σ are very close to 270◦.
(Note the very small range of θ; the focusing field ∝ θ2

would need to be not only very large but also accurately
controlled.) The minimum peak radius in the second band
is several times larger than in the first band. Thus, in the
CLS model, if∈ and L are held constant, there is no phase
advance giving a smaller peak radius than that at 90◦.

Figure 6 shows the first two bands in terms of the phase
advance σ rather than the field strength parameter used for
Fig. 5. Note the singular behavior at 0◦, 180◦, and 360◦.

Pass-band Midpoints
At the midpoints, the cosine factor in Eq. (7) simplifies:

cos θ

(
2z

L
− 1

)
= sin

(
θn

2z

L

)
. (20)

The denominators of Eqs. (7) become P θ; a2 at the mid-
point of any band n is

a+
2
n(z) = ∈L

chn + shn P sin(θn2z/L)
θn

(21a)

a−
2
n(z) =

∈L

θn
cosh[θn(2z/L− 3)]. (21b)

Phase advance at any point
The reciprocals of Eqs. (7) can be integrated (using ap-

propriate branch selection), yielding the exact phase ad-
vance σ(z). [The phase advance over a full period (0, 2L)

0

5

10

0 0.5 1.0 1.49 1.50 1.51

(a) (b)

θ /π θ /π

n =1 n = 2

Figure 5: (a) Values of amax/
√
∈L [Eq. (19)] for the first

stable band. (b) The second band with the θ axis magnified.
The smallest envelope excursions occur for θ = 90◦.
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Figure 6: Values of amax/
√
∈L [Eq. (19)] for the first two

stable bands as a function of phase advance σ [Eq. (17)].
Minimum beam size occurs at σ = 90◦.

agrees with Eq. (17), as it should.] The full version of this
paper will show interesting plots of σ(z).

Beam Matching Equation
Equation (7a) with a given z = const ≡ ζ becomes aζ =

F(∈, L, ζ; θ). If we choose ζ = 0 and specify∈ and L, we
can write a0 = F(θ) as the explicit condition for a matched
beam. In the limit θ → 0, we find a0

2 → 2
√

3∈L/θ2, the
usual smooth-approximation matching condition.

From another viewpoint, we observe that Eq. (4) along
with periodicity of a(z) constitutes a (nonlinear) eigen-
value problem and that aζ = F(∈, L, ζ; θ) is the nonlinear
eigenvalue equation for eigenvalue θ. This will be dis-
cussed in the full version of this paper.
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