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Abstract 

We present a multislice approach for modeling the 
space-charge fields of bunched electron beams that are 
emitted from a metallic cathode using electromagnetic 
Green's function techniques. The multislice approach 
approximates a local region of the beam density and 
current with a slice of zero longitudinal thickness.  We 
show examples of how the multislice approach can be 
used to accurately compute the space-charge fields for 
electron bunch lengths in the regime of photocathode 
sources, i.e. (<10 ps).   

 

INTRODUCTION 
Novel methods for simulating electron sources using 
time-dependent Green’s functions have recently been 
introduced, and resulted in the development of an rf 
photocathode source simulation code at the Indiana 
University Cyclotron Facility called IRPSS [1,2].  Unlike, 
grid based field solvers such as Yee/PIC algorithms [3], 
Green’s function based codes use analytical methods for 
calculating the electromagnetic fields in the presence of 
conductor boundaries to extremely good accuracy.  The 
advantage of using the Green’s function approach over a 
Yee algorithm is two-fold.  First, since the 
electromagnetic fields in a Green’s function based code 
are not calculated on a grid, the code does not suffer from 
the effects of numerical grid dispersion and the associated 
numerical Cherenkov radiation [4].  Secondly, since 
Green’s functions are generated by point like (delta 
function) distributions, it is possible to model arbitrarily 
small bunch density variations to extremely high accuracy 
(<1% field error). 

In order to utilize a Green’s function approach, it is 
required that the charge and current densities of the beam 
are computed at every point in space.  If one uses the 
“simple” approach of modeling the charge and current 
densities with point particles, i.e. the Klimontovich 
distribution, one would need to calculate the force of each 
particle on every other particle resulting in 2

pN  
calculations, where pN  is the number of macroparticles 
in the system.  A more prudent approach models the 
charge and current densities using a set of smooth 
distribution functions instead of point charges.   

This paper outlines our recent efforts to model the fields 
of a bunched electron beam within the IRPSS code using 
a multislice approach.  It addresses the computational  
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requirements that a multislice scheme must satisfy in 
order to accurately model the electromagnetic fields of a 
bunched electron beam.  Our paper is organized as 
follows. In Sec. 2, we review the theoretical framework 
upon which IRPSS is based.  In Sec. 3, we show the 
results of multislice simulations for a uniformly moving 
bunch of with a bunch length of 9 ps and an accelerating 
bunch corresponding to the parameters of the ANL 
Argonne Wakefield Accelerator 1.3 GHz photocathode 
source [5].  In Sec. 4, we give a summary of our paper. 

 

THEORETICAL FRAMEWORK 
At present, IRPSS can simulate the electromagnetic 
space-charge fields of an electron bunch in a geometry 
consisting of an outer conductor pipe (parallel to the z-
axis) and a flat conductor cathode (z = 0).  For this paper, 
the conductor geometry is assumed to have a circular 
cross-section, but other cross-sections, such as 
rectangular, can be modeled.  We have shown in previous 
papers [1,2], that the electromagnetic fields can be 
expressed in terms of time dependent Green’s functions.  
In particular, for a given beam charge and current density, 

( )t,rρ  and ( ) ( ) zz tJt errJ ,, =  which satisfies the 
continuity equation, the transverse electric and magnetic 
space-charge fields are given by  
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and the longitudinal electric field is given by 
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where ( )ttG ,;, rr ′±  are Green’s functions which satisfy 
non-homogeneous wave equations with delta function 
sources and appropriate boundary conditions to ensure 
that 0|| =

surface
E  and 0=⊥ surfaceB  at the conductor 

surface. 
In order to implement this approach numerically, it is 

essential to compute ( )t,rρ  and ( )tJ z ,r .  One method 
for accomplishing this is to represent ( )t,rρ  and ( )tJ z ,r  
as a sum over zero-thickness charged slices, i.e. for a 
cylindrically symmetric beam 
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where ( )tri ,σ  is the charge per area of the ith slice, ( )tzi′′  
is the longitudinal location of the ith slice, and N is the 
number of slices on the simulation.  The benefit of 
choosing a zero-thickness slice representation is that the 
integration over z ′  in Eqs. (1)-(3) can be performed 
analytically.  However, in order to construct a physically 
relevant model using zero-thickness slices, each ( )tri ,σ  
must go to zero at the beam edge to prevent an unphysical 
divergence of the electric field.   

The computational speed of a multi-slice algorithm is 
dramatically improved when the choice of ( )tri ,σ  is such 
that the radial integrals in Eqs. (1)-(3) can be performed 
analytically.  The simplest choice for ( )tri ,σ  which is 
zero at the beam edge and can be integrated analytically is   

      ( ) ( ) ( )( )222 12, bibibiii rrrrrQtr −−= θπσ ,             (5) 
where bir  and Qi  are the beam edge radius and total 
charge of the ith slice, respectively.  Improvements of Eq. 
(5) are possible by modeling higher order radial density 
variations at each slice with annuli that are represented by 
fourth-order polynomials. 

One of the key issues in constructing a multi-slice 
model of an electron bunch is determining the appropriate 
number of slices, N, with which to use.  It is possible to 
make a lower bound estimate of N based on a few 
important parameters of the electron bunch.  In particular, 
suppose that a beam bunch has a uniform radius rb, a 
bunch length L, and is uniformly moving with a 
relativistic energy factor, γ .  Since the bunch is 
undergoing uniform motion, one finds that the 
electromagnetic potentials as a function of z due to each 
slice are maximized at the slice location and have a 
characteristic width of order γbr  in z-space.  In order to 
compute the electric fields accurately, it is necessary that 
the number of slices times the characteristic width of the 
potential is much larger than L, or LNrb >>γ . In   
practice, one finds that in order to achieve (<1% field 
error near electric field extremum) for typical electron 
bunches which are found in photocathode source 
experiments, 

      brLN γ50~ .                  (6) 
 

MULTISLICE SIMULATIONS 
Figs. 1(a) and 1(b) show plots of the radial electric field 
versus r/a and longitudinal electric field versus z/a at a 
time ct/a=0.05, for slice numbers corresponding to 1, 61, 
101, 151, and 301.  The bunch is assumed to have a 
uniform velocity V=0.9c, and the head of the bunch is 
emitted at time t=0, where a is the conductor pipe radius.  
The bunch is assumed to have uniform density in the 
longitudinal direction with a bunch length of 9.1ps (2.5 
mm) and a transverse density profile corresponding to Eq. 
(5) with a beam edge radius of 1 mm.   The slices in the 

model are identical and are equal spaced throughout the 
bunch.  The first noticeable feature of Figs. 1(a) and 1(b) 
is that  the  single  slice  model  gives an  enormous over- 
 

Figure 1: (a) Plot of the normalized radial electric field as 
a function of r/a and (b) plot of the normalized 
longitudinal electric field as function of z/a for 1, 61, 101, 
151, and 301 slices. 
 
estimate of the electric fields.  For the higher slice 
numbers, we see good agreement in the radial electric 
field.   However in the case of the 61 slice model, we see 
a 20% error in the longitudinal electric field.  In general, 
we find that the error in the longitudinal electric field will 
typically be much greater than the error in the radial 
electric field for low slice numbers.  This is due to the fact 
that each slice is contributing a longitudinal electric field 
with a sign that is opposite to the field of the adjacent 
slice causing large field cancellations. According to the 
estimate in Eq. (6), the 1% field error should be achieved 
at around 281 slices.  This is in agreement with the 
observation of extremely small fluctuations in the 301 
slice case.  We are currently investigating promising 
methods of removing the effects of electric field errors 
when slice numbers are low, including filtering 
techniques [6].  

Figs. 2(a), (b), and (c), show the results of space-charge 
electric field calculations using similar parameters as the 
ANL AWA 1.3 GHz photocathode gun [5].  Based on the 
parameters of the maximum electric field and rf phase 
injection for the experiment, we determined the trajectory 
of the head of the bunch (Fig. 2(a) in red) which is 
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assumed to be emitted at time t=0.  Also, plotted in Fig. 
2(a), is the lightline (in blue) z=ct.  We  assumed that  the  

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: (a) Plot of the head slice trajectory (red) and 
lightline (blue) versus ct/a, (b) plot of normalized radial 
electric field as a function of r/a and (c) plot of the 
normalized longitudinal electric field as function of z/a 
for 1, 61, 101, 151, and 301 slices for an accelerating 
beam.  

 
bunch had a transverse cross-section given by Eq. (5) with 
a beam edge radius of 1 mm, which corresponds to the 
experimental laser spot size.  The beam is assumed to    
have uniform density in the longitudinal direction with 
subsequent slices following the same trajectory as the 
head slice, but displaced in time by equal amounts over a 

1.8 ps bunch emission.  The radial and longitudinal 
electric fields in Figs. 2(b) and 2(c) correspond to a time 
of ct/a=0.05.  At this chosen time, one finds that the head 
and tail of the electron bunch have relativistic factors of 

18.1=headγ  and 14.1=tailγ .   The bunch length is 
approximately 0.28 mm, which according to Eq. (6) 
implies that low field error should occur when a minimum 
of 17 slices is used.  It is clear from Figs 2(b) and 2(c), 
that the electric fields for the cases of 61, 101, 151, and 
301 slices, are all in excellent agreement. 
 

SUMMARY 
In summary, we have demonstrated the computational 
requirements for using a multislice approach in 
conjunction with a Green’s function formalism to 
accurately resolve the space-charge electromagnetic 
fields.  The number of slices which are necessary for 
precision modeling of the electromagnetic fields depends 
on the bunch length, bunch radius, and beam energy.  In 
general, the dominant numerical errors for a multislice 
model are within the longitudinal electric field due to the 
large scale cancellation of electric fields between adjacent 
slices.  We are actively pursuing techniques, such as 
filtering methods [6], which will drastically reduce the 
number of slices that are necessary for high-accuracy field 
calculations.  
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