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Abstract

The standard implementation of using FFTs to solve
the Poisson equation with open boundary conditions on a
Cartesian grid loses accuracy when the change in ρG (the
product of the charge density with the Green function) over
a mesh cell becomes nonlinear; this is commonly encoun-
tered in high aspect ratio situations and results in poor ef-
ficiency due to the need for a very large number of grid
points. A modification which solves this problem, the inte-
grated Green function (IGF), has been implemented in two
dimensions using linear basis functions and in three dimen-
sions using constant basis functions. But, until recently, it
has proved to be very difficult to implement IGF in three di-
mensions using linear basis functions. Recently significant
progress has been made. We present both the implementa-
tion and test results for the three-dimensional extension.

INTRODUCTION

Poisson solvers used in quasi-static electric and gravi-
tational particle-in-cell simulations generally fail when the
grid aspect ratio differs significantly from unity [1]. Im-
portant problems that involve extreme aspect ratios include
long beams in rf accelerators, beams in induction linacs,
and galactic collisions. For these applications, standard
grid-based approaches [2] require large numbers of grid
points, leading to prohibitive computational effort. As a
result, the accurate modeling of high-aspect-ratio systems
is extremely challenging.

Difficulties with the standard approach arise when varia-
tions in the Green function and the charge density occur on
very different scales. If it is the charge density that varies
on the larger scale, then one can take advantage of the fact
that the Green function is known a priori. Integrating the
Green function with appropriate basis functions allows one
to make full use of that a priori knowledge. This has been
done in very successfully in two dimensions [3], see Fig-
ure 1. But three dimensions, as always, presents a greater
challenge. The three-dimensional case has been addressed
using constant basis functions [4], but never before with
linear basis functions.

THE INTEGRATED GREEN FUNCTION

The scalar potential can be written as a convolution of
the charge (or particle) density with the appropriate Green
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Figure 1: Errors in computed electric field values Ex as a
function of x for a two-dimensional system [3]. The blue,
green, and red data, all based on a standard FFT-based Pois-
son solver [2], use increasingly more grid points along the
x axis. That algorithm requires more than 8000 points to
achieve an accuracy that is roughly 1% or better. By con-
trast, the two-dimensional IGF algorithm (light violet) does
substantially better with just 64 points.

function:

φ(r) =
∫

ρ(r)G(r − r′)dr′. (1)

Discretizing this integral over a grid, one obtains the dis-
crete convolution

φijk = Vh

∑
i′j′k′

ρi′j′k′Gi−i′,j−j′,k−k′ , (2)

where Vh denotes the volume of a grid cell. This sum can
be computed efficiently using FFTs [2].

The discretization (2) is equivalent (modulo boundary
terms) to using the trapezoidal rule to approximate the con-
volution integral (1). To yield accurate results, this ap-
proach requires that the product ρG vary slowly over a grid
cell; but for large aspect ratios, G can vary much more
rapidly than ρ. Rather than discretize the domain on the
finer scale, one may take advantage of the known form of
the Green function G: Write (1) as a sum of integrals over
each cell; and within each cell approximate the charge den-
sity as

ρ(ri′j′k′ + εεε) = ρi′j′k′
(
1 − εx

hx

)(
1 − εy

hy

)(
1 − εz

hz

)

+ ρi′+1,j′k′
( εx

hx

)(
1 − εy

hy

)(
1 − εz

hz

)

+ · · · + ρi′+1,j′+1,k′+1

( εx

hx

)( εy

hy

)( εz

hz

)
, (3)
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where (hx, hy, hz) denote the dimensions of each grid cell,
and εj ∈ [0, hj]. This approximation reproduces the values
on the grid nodes, and within a cell it interpolates linearly
along each axis. Pulling the nodal charge density values out
of the integrals, shifting indices, and rearranging terms, we
can recover the convolution sum of (2), but with the Green
function replaced by an effective Green function G eff :

φijk = Vh

∑
i′j′k′

ρi′j′k′Geff
i−i′,j−j′,k−k′ . (4)

This Geff , the integrated Green function (IGF), is a sum of
eight terms—one for each of the terms in (3):

Geff
Δi,Δj,Δk =

1
V 2

h

1∑
r,s,t=0

hx(Δi+r)∫

hx(Δi+r−1)

du

hy(Δj+s)∫

hy(Δj+s−1)

dv

hz(Δk+t)∫

hz(Δk+t−1)

dw (−1)r+s+t

× [u − hx(Δi − 1 + 2r)][v − hy(Δj − 1 + 2s)]
× [w − hz(Δk − 1 + 2t)] G(u, v, w). (5)

Given a grid indexed by i ∈ [0, Nx], j ∈ [0, Ny], and
k ∈ [0, Nz], we shall need Geff

ijk at values i ∈ [−Nx, Nx],
j ∈ [−Ny, Ny], and k ∈ [−Nz, Nz]. Using the fact that
G(u, v, w) is even in all its arguments, one can show that
Geff

ijk is even in all its indices. Even so, with eight terms,
and eight limits per term, there is a lot of work to be done.
The generic indefinite integral was computed using Mathe-
matica [5] and lots of algebraic simplifications:

∫ ∫ ∫
(u − a)(v − b)(w − c)√

u2 + v2 + w2
dw dv du =

1
288

{
12
5

r
[
8r4 + 40(abuv + acuw + bcvw)

− 5
(
au(2u2 + 5v2 + 5w2) + bv(5u2 + 2v2 + 5w2)

+ cw(5u2 + 5v2 + 2w2)
)]

+ u
[
3u

(
3(b + 3c)u2

+ 2c(9v − 28b)v − 24bcw + 6(b + 2c)w2
)

−8a
(
2b(u2−27cv−18cw+6w2)+c(5u2+21v2+9w2)

)]

− 144abcw2 arctan
( u

w
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(v

u
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+ 12a
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(6)

where r =
√

u2 + v2 + w2. Special cases of this integral
occur when any one or more of a, b, or c vanish, and when
any one or more of the limits vanish. These spacial cases
require some care to compute. Moreover, combining the
values of (6) at the limits leads, in some cases to cancela-
tions that result in a significant loss of precision. We found
the use of quad-precision arithmetic a necessity for the ac-
curate computation of Geff .

We have coded (6), and all its special cases, in a FOR-
TRAN90 module to compute 3D space-charge forces us-
ing the IGF, and we have implemented this as one of the
options available for computing space-charge effects in
MARYLIE/IMPACT. Because the integrals that compose
Geff are complicated and require quad precision arithmetic,
the 3D IGF calculation of space-charge for large-aspect-
ratio beams still demands considerable computational ef-
fort. To speed these computations, we parallelized the cal-
culation of the IGFs over the domain grid, and we recom-
pute the IGF array only when the change in the bunch size
is sufficient to require it.

VALIDATION

To test our implementation, we used it to compute the
scalar potential produced by a homogeneous ellipsoid, for
which the result is known analytically [6, 7]. Figure 2
shows some typical results. In this case, the ellipsoid has
semi-axes ax = 10−1, ay = 3 × 10−3, and az = 10−4,
yielding aspect-ratios ax/ay ≈ ay/az ≈ 30, and ax/az =
103. In this case, the benefit of using IGFs is dramatic.
With a grid of just 32× 32× 32 points, IGF reproduces the
analytic results to an accuracy better than 1% everywhere
except at the very edge, where it rises to about 2%. The
standard approach needs eight times more points along the
x-axis to even approach 10% accuracy.

DISCUSSION

The complexity of the calculation, and the need for quad-
precision arithmetic both mean that the 3D IGF algorithm
described here will not be the first choice for the calculation
of space-charge forces in routine (garden-variety) charge
distributions. On the other hand, in situations where aspect
ratios do differ significantly from unity, the 3D IGF tech-
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Figure 2: Comparisons of different methods for comput-
ing the scalar potential φ of a homogeneous ellipsoid.
These plots show φ as a function of x. The red and blue
curves in each plot show the analytic results: on-axis in
red, and (y, z) = (ay/2, az/2) in blue. The green and
orange curves give the corresponding results obtained us-
ing different techniques: standard Hockney algorithm on a
32× 32× 32 grid (top), and a 256× 32× 32 grid (middle);
3D IGF algorithm on a 32 × 32 × 32 grid (bottom).

nique dramatically reduces the number of mesh points re-
quired for an accurate computation of space-charge forces.

We see two ways in which the IGF computation might be
improved. First, one might use numerical cubature [8, 9] to
evaluate (5). While 3D numerical cubature may be expen-
sive, so are the many transcendental function calls in (6).
Moreover, numerical cubature will not suffer from the can-
cellations that render quad-precision arithmetic necessary.
The singularity at the origin will require some care, but that
obstacle is surmountable. Second, we chose (3) to approx-
imate the charge density because it is simple and continu-
ous. But it may be that different basis functions exist which
are continuous and have the property that their convolution
with the Green function yields a result much simpler than
(6).
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