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Abstract

The University of Maryland Electron Ring (UMER) is
designed for the transport of low energy (10 keV), high
current (100 mA) electrons in a 72-magnetic-quadrupole
lattice over an 11.5 m circumference. With these parame-
ters, and a typical single-particle phase advance per period
of 760, space charge is extreme. However, high current
is not necessary for establishing space charge dominated
transport in UMER. In fact, low current (0.6 mA) beam
transport in combination with longer full-lattice period can
yield strong space charge conditions. All 72 quadrupoles
are needed, though, to yield beams with relatively small
cross sections, as required for emittance-dominated trans-
port. We present design calculations for the low-current,
high space charge regime in UMER, including the use of
Collins-type insertions for matching into the ring lattice.

INTRODUCTION

The effects of space charge are relevant in the low-
energy sections of many existing accelerators. Better un-
derstanding of these effects is also of major importance
for the development of advanced accelerators that require
higher current or, more generally, beams of higher quality.
Since its inception around 2000, The University of Mary-
land Electron Ring (UMER) purports to address many is-
sues of the physics of space charge dominated beams, from
the electron source to injection/matching, beam transport
and a host of questions in both transverse and longitudi-
nal dynamics. The accompanying invited paper by R.A.
Kishek et al [1] reviews the general features of UMER,
while a number of other papers from other members of
the UMER group present more detailed accounts of spe-
cific topics. In this paper, we discuss the beam physics
in UMER whereby a combination of low current, longer
lattice FODO period, appropriate focusing/steering, and
the right conditions for injection/matching lead to strong
space-charge dominated transport.

SCALING OF SPACE CHARGE

The role of space charge in beam transverse dynamics
can be understood in terms of a single parameter. This pa-
rameter can be the tune depression ν/ν0, or ratio of beta-
tron oscillations with and without space charge, or, alter-
natively, the ratio of space charge force to external force at
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the effective beam radius in a uniform-focusing model of
the actual periodic lattice. If we denote this ratio by χ, we
can write [2, 3]:

χ = 1 −
(

ν

ν0

)2

. (1)

Clearly, the range of χ is from zero, in the limit of zero
current, to 1 in the space charge limit. Another parameter,
related to χ, can be used to express more transparently the
role of external focusing and the beam quantities [4]:

u =
K

2k0ε
, (2)

where K is the generalized beam perveance (sometimes
also called “space charge parameter”), k0 is the wavenum-
ber representing external focusing, i.e., k0 = ν0/R in a
circular lattice of radius R, and ε can be taken as the edge
emittance (4RMS, unnormalized). By contrast to χ, u
ranges from zero at zero current, to infinity at zero emit-
tance. Further, it can be shown from the envelope equation
(in the uniform focusing approximation) that u=1/2 when
the geometrical mean of external and “emittance” forces
equals the space charge force at the effective beam edge.

In UMER, we can implement electron beam transport
with χ ranging from 0.32 to 0.97, or u from 0.20 to 3.0.
From Eq. 2, we see that it is possible to obtain high space
charge by simply reducing external focusing. This involves
cutting the number of quadrupoles in the lattice by a factor
of 2 or 4, thus increasing the full-lattice period S by the
same factor. At the same time, the zero-current phase ad-
vance per period, σ0 = 2πν0/N (N=number of full lattice
periods in the ring), is kept constant. In effect, the bare tune
ν0 is reduced, since k0 = σ0/S.

To complement the equations above, it is interesting to
note that the ratio of effective beam radii in the limits of
zero emittance and zero current is given (in the notation of
Ref. [4]) by

aB

a0
=

√
K/k2

0

ε/k0
= (2u)1/2, (3)

as can be easily shown from the envelope equation in the
uniform-focusing model. For any combination of space
charge and emittance, however, the effective beam radius
is better approximated by just adding aB and a0 in quadra-
ture [4]:

a �
√

a2
B + a2

0 = a0

√
1 + 2u, (4)

with the provision that u<∼ 5 (χ=0.99 for u=5).
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BEAM AND LATTICE PARAMETERS

Table I summarizes the beam and lattice parameters of
three modes of operation in UMER. The first two corre-
spond to low current, one of which is emittance-dominated
and the other one space-charge dominated. The tabulated
k2
0 values do not correspond to the quantity in the equations

above but to hardtop values of the hardedge quadrupole
models in UMER [5]. The effective k0 in a uniform-
focusing model is k0 = σ0/S, or ν0/R, where σ0=760, and
R=1.83 m. The beam radii in Table I, on the other hand,
are calculated from the solution of the envelope equations,
but Eq. 4 gives surprisingly close results.

Table 1: Examples of low and high electron beam current
in UMER. All three cases at 10 keV, σ0=760. Emittance (in
μm) is 4RMS, unnormalized.

Beam Current → 0.6 mA 0.6 mA 23.5 mA
Emittance → 5.5 μm 5.5 μm 20 μm
Lat. Period, S (cm) 32 128 32
Ext. Foc., k2

0 (m−2) 168.4 38.3 168.4
Beam Rad., a (mm) 1.4 3.7 4.9
Intensity, χ 0.32 0.76 0.95
Parameter u 0.20 0.79 2.1
Bare Tune, ν0 7.60 1.90 7.60
Tune Dep., ν/ν0 0.82 0.49 0.22

Figures 1a-b illustrate two basic lattice structures. The
optics in Fig. 1a is especially suited for low-current, space-
charge dominated transport; the geometry in Fig. 1b, on
the other hand, is the standard one in UMER. In Figs.1a-
b, D# and F# represent defocusing and focusing magnetic
quadrupoles, BD# are bending dipoles, BPM# are beam
position monitors, and RSV# represent steerers for vertical
corrections. Not shown in Fig. 1 are the sets of Helmholtz-
type coils employed for balancing the horizontal compo-
nent of the earth’s B-field.

CLOSED ORBIT AND RMS ENVELOPE
MATCHING

The code WINAGILE [6] is used for closed orbit calcu-
lations with the two lattices shown above. In the model,
the action of a constant vertical component of the earth’s
field By=0.4 G is represented with kicks of the order of
1 mrad every cm. Naturally, the closed orbit will depend
on the bending dipole settings and the earth’s field, leading
to solutions with unique injection values x0, x′

0 for the hor-
izontal offset and slope (relative to a reference trajectory
that does not include the effect of the earth’s By-field) at
the entrance of the first ring section. Figure 2 shows results
of closed orbits for the two lattices of Figs. 1a-b. The or-
bits are obtained by adjusting the bending dipole settings
around the ideal values, i.e., those that undo the bending by
the earth’s field, until the centroid oscillations are small and
symmetrical as possible relative to the vacuum pipe axis.
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Figure 1: UMER lattices with (a) one quadrupole per ring
section (S=128 cm) - one FODO cell shown, and (b) four
quadrupoles per ring section (S=32 cm) - almost four com-
plete FODO cells shown. See text for explanation of labels
and Table I for beam parameters.

Figure 2: Closed orbits (shown over roughly 1/3 of the
ring) obtained with the code WINAGILE for UMER lat-
tices having full periods equal to S=128 cm (broken curve),
and S=32 cm (solid curve). The vertical component of the
earth’s B-field is 0.4 G; the lattice for S=128 cm is shown
at the bottom.

Some trial and error is required in obtaining the closed
orbits described. For symmetry reasons, only every other
bending dipole in the lattice illustrated in Fig. 1a is pow-
ered in the WINAGILE model, so BD1=0, BD2=67.2 mrad,
etc, while all bending dipoles are given kicks of 35.2 mrad
in the lattice represented by Fig. 1b. (In reality, “BD1=0”
means that no compensation for the action of the earth’s
field is implemented with the dipole, so it is powered to
provide a 100 bend, as if no earth’s field were present.)
The resulting orbit for the lattice with longer period is
highly asymmetric, with excursions of almost 4 mm at the
powered bending dipoles. The asymmetry can be under-
stood from the fact that BD2 is not equidistant from the
quadrupoles (Fig. 1a); other solutions where both BD1 and
BD2 are powered differently to try to create a better orbit
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do not seem to work.
Despite the large offsets and asymmetry of the closed

orbit in the lattice with fewer quadrupoles, more BPM
diagnostics are available per FODO period, in addition
to correctors that are closer (in a relative sense) to the
quadrupoles (e.g., BD1 and BD3 in Fig. 1a) than in the
standard lattice of Fig. 1b. In fact, if random errors in
the dipole strengths, transverse tilt angle and also in the
transverse placement of quadrupoles are implemented in
WINAGILE, a closed-orbit correction scheme employing
the bending dipoles and the BPM monitors works signif-
icantly better with the lattice with longer period.

In practice, the closed orbits may deviate from the calcu-
lated ones because of a number of factors: varying ambient
field, residual injection errors, coupling of transverse com-
ponents of motion from skew quadrupoles and dipoles, and
space charge forces. The latter can be more detrimental for
beam transport employing the lattice with longer period,
especially since the closed orbit in that case requires a rel-
atively large offset at half the bending dipoles.
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Figure 3: Collins-insertion geometry for match-
ing/injection of low-current, space-charge dominated
transport in UMER. See text for explanation of labels.

Another fundamental aspect of beam transport, RMS en-
velope matching, requires different approaches for the two
lattices under consideration. Figure 3 shows the match-
ing/injection geometry that works best for the low-current,
long period transport problem (Fig. 1a). It is a Collins-type
insertion [7]. A short solenoid and three printed-circuit
(PC) magnetic quadrupoles (Q3, Q5, and Q6 in Fig. 3)
are employed in the straight section following the elec-
tron source and before inflection into the ring lattice with
a pulsed dipole (D0). Matching/injection for low or high
current into the standard lattice of Fig. 1b, on the other
hand, employs 3 additional PC quadrupoles in the straight
section (Q1, Q2, and Q4, not shown in Fig. 3), and wide-
aperture, Panofsky-type magnetic quadrupoles (not shown
on Fig. 3), one on either side of D0. The Collins-type
insertion is not only more natural to the matching prob-
lem of low-current, high space charge, but also avoids the
use of injection through a tilted quadrupole. This wide-
aperture quadrupole, upstream of D0, is necessary in the
standard lattice for both envelope matching and for deflect-
ing the beam into D0 [8]. Thus, the only drawback of not

using standard injection is that D0 has to be powered with
more current to compensate for the absence of the match-
ing/injection quadrupole.

Figure 4 shows the results of RMS envelope matching
calculations for low beam current with both the standard
and Collins injection optics. It is clear that the Collins ge-
ometry leads to a more natural beam evolution into the peri-
odic lattice, albeit with much stronger space charge. Initial
experiments with Collins insertion in UMER have proved
successful. To achieve multi-turn with this scheme, how-
ever, an upgrade of the recirculation electronics is needed.

In conclusion, high current is not a requirement for
space-charge dominated beam transport, as it may be com-
monly believed. In UMER, the high density of quadrupoles
permits the implementation of different schemes to accom-
plish emittance or space-charge dominated beam transport
with the same low-current beam. This possibility greatly
expands the parameter space that UMER can access for re-
search in beam physics.

Figure 4: RMS Envelope matching calculations for low
current (0.6 mA) in UMER with emittance-dominated
(S=32 cm), and space charge dominated (S=128 cm) trans-
port. See also Table I and Fig. 3.
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