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INTRODUCTION

Following our earlier formulation of the coherent syn-
chrotron radiation (CSR) effect on bunch dynamics in mag-
netic bends, here we investigate the behavior of the effec-
tive CSR forces for an energy-chirped Gaussian bunch in
the bending plane around full compression, with special
care being taken in the incorporation of the retardation re-
lation. Our results show clearly a delayed response of the
CSR forces to the compression or lengthening of the bunch
length. In addition, around full compression, our results
reveal sensitivity of the effective CSR forces on the parti-
cles’ transverse position, as a consequence of the geometry
of particle interaction and retardation in this regime. These
results can serve as benchmarks to the numerical simula-
tion of the CSR effects.

THE DYNAMICAL EQUATIONS

Consider an electron bunch moving ultrarelativistically
on a curved orbit in a bending system. For a submilimeter
bunch with high charge, the curvature-induced particle ac-
celeration often causes the beam to emit synchrotron radia-
tion coherently, and meanwhile the particles’ collective in-
teraction is often dominated by the acceleration term in the
Lienard-Wiechert fields. This is called the coherent syn-
chrotron radiation (CSR) effect. From the canonical for-
mulation of the CSR effect in magnetic bends using Hamil-
tonian [1], one obtains the first order equation of motion for
the electrons

dX

ds
= Y (X, s) ≡ M(s)X + F [f ](X, s) (1)

for XT = (x, x′, y, y′, z, δH), [F [f ](X, s)]T =
(0, F̃x, 0, F̃y, 0, F̃H), and

M(s) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
−k2

x(s) 0 0 0 0 κ0(s)
0 0 0 1 0 0
0 0 −k2

y(s) 0 0 0
−κ0(s) 0 0 0 0 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Here M(s)X in Eq. (1) reflects the nominal linear op-
tics, with the horizontal and vertical focusing strengths
kx(s) and ky(x) due to external magnetic fields satisfy-
ing k2

x(s) = κ1(s) − κ2
0(s) and k2

y(s) = −κ1(s), and
κ0(s) = 1/R(s) for R(s) being the radius of the curved
orbit. The relative canonical energy offset is defined as

δH � eΦ̃ + E

γ0mc2
− 1.

The term F [f ](X, s) contains the normalized effective CSR
forces as expressed in terms of potentials:
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F̃x(X, s) � κ0(Ãs − β0Φ̃) +
∂(Ãs − β0Φ̃)

∂x
− ∂Ãx

∂s

F̃y(X, s) � ∂(Ãs − β0Φ̃)
∂y

F̃H(X, s) � ∂(Ãs − β0Φ̃)
∂z

(2)
with the potentials depending on the bunch phase space dis-
tribution f(X, s)

[Ãs − β0Φ̃](x, y, z, s) �
2β0re

γ0

∫
dsr

∫
dXrf(Xr, sr)

(−(Δs)2

2R2

)
δ(P )θ[Q]

Ãx(x, y, z, s) �
2β2

0re

γ0

∫
dsr

∫
dXrf(Xr, sr)

(−Δs

R

)
δ(P )θ[Q]

(3)

for
P = [(s − sr) − (z − zr)]2 − β2

0 [r(x, y, s) − r(xr, yr, sr)]2

Q = (s − sr) − (z − zr),

with re the electron radius, Xr = (xr, x
′
r, yr, y

′
r, zr, δHr)

representing the source particle’s phase space variables at
the retarded pathlength sr, and r(x, y, s) and r(xr, yr, sr)
the position vectors for the test and source particles respec-
tively. In Eq. (3), the Dirac δ function and the Heaviside
step function θ(x) together imply that the source particle’s
retarded longitudinal position is determined by

zr = zr(x, y, z, s;xr, yr, sr)
≡ z − s + sr + β0|r(x, y, s) − r(xr, yr, sr)|,

which imposes the retardation relation

tr = t − |r(x, y, s) − r(xr, yr, sr)|
c

on the interaction between particles.

THE EFFECTIVE CSR FORCES

Next, we focus on the CSR interaction for a 2D Gaussian
bunch in the bending plane on a circular orbit of constant
radius R0, with an initial linear energy chirp δH0 = δun

H0 +
uz0. We will calculate the first order effective CSR forces
for the bunch, assuming that the single particle dynamics is
only influcenced by the linear design optics

X(s) = R(s)X0(0) (4)
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for R(s) = R(s)A−1, with

R(s) =

⎛
⎜⎜⎝

R11(s) R12(s) 0 R16(s)
R21(s) R22(s) 0 R26(s)
R51(s) R52(s) 1 R56(s)

0 0 0 1

⎞
⎟⎟⎠ ,

and

A =

⎛
⎜⎜⎝

1 0 0 0
αx0/βx0 1 0 0

0 0 1 0
0 0 −u 1

⎞
⎟⎟⎠ ,

and X0 = (x0, x
′
0, z0, δH0) is the normalized phase space

parameters for the particle at s = 0. Let us assume that the
initial normalized phase space distribution ρ(Xr0, 0) takes
the form

ρ(Xr0, 0) = Nρun(Zr0)λ0(zr0),

with N the total number of electrons, λ0(zr0) the initial
longitudinal charge density distribution function

λ0(z0) =
1√

2πσz0

exp
(
− z2

0

2σ2
z0

)

and ρun(Zr0) the initial intrinsic (or uncorrelated) distribu-
tion in Z0 = (x0, x

′
0, δH0) space, with transverse emittance

εx0 and (canonical) energy spread σH0,

ρun(Z0) =
1√

2πσH0

exp
(
− δ2

H0

2σ2
H0

)

× 1
2πεx0

exp

(
− x2

0

2σ2
x0

− x
′2
0

2σ2
x0′

)

for σx0 =
√

βx0εx0/γ0 and σx0′ =
√

εx0/γ0βx0, with
βx0 the initial transverse beta function at s = 0. We then
apply Eq. (4) to Eqs. (2) and (3) by changing the variables
from Xr to Xr0 = R−1(s)Xr. The effective longitudinal
force in Eq. (2), for a particle at (x, z, s) on a circular orbit
with radius R0, is

F̃
[f(0)]
H (X, s) =

β2
0Nre

γ0|R0|
×
(∫

Ω(+)
dsrdZr0 g(+) +

∫

Ω(−)
dsrdZr0 g(−)

)
, (5)

where the integrand g(±) in Eq. (5) is

g(±) =
−(Δs̄)2

2|R55(sr)|
√

b2 − ac

×
[
ρun(Zr0)

∂λ0(z
(±)
r0 )

∂zr0
− uλ0(z

(±)
r0 )

∂ρun(Zr0)
∂(δH)r0

]

for a, b, c listed in Ref. [1], Δs̄ = (s − sr)/|R0|, and z
(±)
r0

and Δz(±) defined by

z
(±)
r0 (x, z, s;Zr0, sr) =

z − Δz(±)

R55(sr)

= |R0|az̄ − b ∓√
b2 − ac

aR55(sr)
.

In Eq. (5), the domains of integration Ω(±) are set so as to
ensure the existence of solutions for z

(±)
r0 and to exclude

the advanced solutions

Ω(±) = {b2−ac ≥ 0 and Q(±) = Δs+zr1−Δz(±) ≥ 0}.
One can show [2] that for a source particle in a tilted bunch
to emit EM fields from the pathlength sr, which interacts
with the test particle at (x, z, s), the source particle is lim-
ited to a region of the initial phase space

η ≡
∑

j=1,2,6

αj(sr)(Xr0)j ≤ ηmin (6)

with

αj(sr) =
χrR1j(sr) −R5j(sr)

|R0|
and

ηmin = A −
√

B. (7)

With notation

x̂ =
x

R0
, z̄ =

z

|R0
, χr =

R55(sr)
R15(sr)

,

A and B in Eq. (7) are defined as

A = Δs̄(1 − χ̂rΔs̄/2) + (χ̂rx̂ − z̄),

B = (1 − χ2
r)Δs̄2

(
1 − Δs̄2

3
− 1

γ2
0

+ 2x̂

)
.

One can further reduce the integral in Eq. (5) by
changing the variables from (xr0, x

′
r0, δHr0) in Eq. (5) to

(q1, q2, q3), with

q3 =
|R0|
βx0

η

for η in Eq. (6), and letting q1, q2 be orthorgonal to q3. This
allows the reduction of the integral in Eq. (5) to a 2D integal
over sr and q3

F̃H(x, z, s) = C0

∫ ∞

−∞
dΔs̄

Δs̄2

|uR16(sr)|
√

detΥ(sr)

×
∫ qmin

−∞

dq3

p(sr, q3)
[I(+)

0 + I
(−)
0 ] (8)

for
C0 =

β2
0Nre

γ0σ2
z0

, (9)

where p(x, z, s, sr, q3),Υ(sr) and I
(±)
0 (x, z, s, sr, q3) are

functions of Rij(sr) and the intrisic rms values of the ini-
tial bunch phase space parameters, as listed in Ref. [2].

For a thin bunch with mild tilt, the upper integration limit
qmin(x, z, s, sr) in Eq. (8) covers the whole beam phase
space distribution, so the integration range for q3 is effec-
tively (−∞,∞). However, for a thick bunch around full
compression, for each sr, the upper limit qmin selects a por-
tion of the initial bunch phase space Zr0 to interact with
the test particle at (x, z, s). Such selection of the initial
phase space is sensitive to the test particle’s internal coor-
dinates (x, z) inside the bunch. This causes the sensitive
dpendence of the effective CSR forces on the (x, z) of the
test particle.
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AN EXAMPLE

To illustrate the behavior of the effective longitudinal
CSR force calculated from the above formula, here we
devise a model chicane which consists of three rectangle
dipole magnets with bending radius R0 = 1 m. The length
for the two side dipoles is Lb = 0.3 m and for the cen-
ter dipole LB = 0.6 m. The drift length between ajacent
dipoles is Ld = 0.4 m. For the bunch entering the chicane,
we assume a δ-z correlation u = −10.56 m−1. The result-
ing bunch compression factor, R55(s) = 1 + uR56(s) vs.
s, is plotted in Fig. 1. Note that the bunch reaches full com-
pression at sc = 1.2 m when R55(sc) = 0 or χ(sc) = 0.

Assume the 2D Gaussian bunch has initial transverse
twiss parameters βx0 = 5 m, αx0 = 1, and εx0 = 1 mm-
mrad. The initial longitudinal parameters of the bunch are
σH0 = 10−4, σz0 = 0.5 mm, and E0 = 70 MeV. The
bunch is transported through the chicane following design
optics, and the CSR forces generated by the bunch on test
particles are calculated. For s = 1.1 to 1.3 m, the normal-
ized effective longitudinal CSR force in Eq. (8), for (x, z)
around the bunch, is displayed by the gray mesh in Fig. 2.
In addition, we use N=1000 particles to represent the Gaus-
sian bunch distribution and propagate them through the de-
sign optics. At each pathlength, the (xk, zk) coordinates of
these particles (k = 1 to N ) are shown as the green dots
in Fig. 2; and the CSR force Fk = FH(xk, zk, s) ( normal-
ized by C0 in Eq. (9)) on these particles are plotted as the
red dots in Fig. 2. The average of Fk over these particles,
〈F 〉 = (1/N)

∑
k Fk, which represents the strength of the

CSR interaction, is shown as the solid red curve in Fig. 3,
which is compared with the blue solid line representing 〈F 〉
for a rigid-line bunch [3].
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56
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Figure 1: Compression factor R55(s) = 1 + uR56(s) vs. s
for the example chicane when u = −10.56 m−1.

DISCUSSIONS

Our study of the CSR interaction for an energy-chirped
2D Gaussian bunch on a circular orbit shows that when the
bunch is around full compression, the effective longitudi-
nal CSR force on the bunch has a strong dependence on the
particles’ internal position inside the bunch. Besides, we
also show that the strength of these forces has a delayed
response to the variation of bunch length. Similar behav-
iors are also found for the transverse CSR forces. These
analytical results can serve as benchmark to the CSR simu-
lations. For example,the macroparticle model in our previ-
ous CSR simulation [4] was too crude to accurately model

Figure 2: FH(x, z, s)/C0 vs. x/σx(s) and z/σz(s) at var-
ious pathlength s.
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Figure 3: Mean of FH/C0 for the 1000 test particles vs s.

the detailed sensitivity of the effective CSR forces around
full compression, and thus improvement of the simulation
model is required.

This work was supported by U.S. DOE under Contract
No. DE-AC05-06OR23177.
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