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Abstract

In the present analysis we study the self consistent prop-
agation of nonlinear electromagnetic pulses in a one di-
mensional relativistic electron-ion plasma, from the per-
spective of nonlinear dynamics. We show how a series
of Hamiltonian bifurcations give rise to the electric fields
which are of relevance in the subject of particle accelera-
tion. Nonlinear coupling of plasma waves and electromag-
netic pulses triggers strong chaotic dynamics which may
detrap the plasma wave from the electromagnetic pulse,
leading to wave breaking. Connections with results of ear-
lier analysis are discussed.

INTRODUCTION

Recent SLAC plasma wakefield accelerator experi-
ments [1], operated in a metre-scale plasma, have demon-
strated the ultra-high gradients provided by this technol-
ogy. To maintain these gradients over longer and longer
plasmas, it is important to have a deeper understanding on
the processes of wakefield destruction (wave breaking).

Using the same model that Kozlov et al. [2] investi-
gated numerically the propagation of coupled electromag-
netic and electrostatic modes in cold relativistic electron-
ion plasmas and Mofiz & de Angelis [3] applied analytical
approximations, we shall construct a canonical representa-
tion to examine some key points like the way small am-
plitude localized solutions are destroyed and when isolated
pulses are actually free of smaller amplitude trails (this is
related with the existence of wakefields following the lead-
ing wave front which is of relevance for particle accelera-
tion). This will be done in association with techniques of
nonlinear dynamics [4], since we intend to establish con-
nection between the pulses of radiation and fixed points
of the corresponding nonlinear dynamical system (Licht-
enberg and Lieberman 1992).

THE MODEL

We follow previous works and model our system as con-
sisting of two cold relativistic fluids: one electronic, the
other ionic. Electromagnetic radiation propagates along the
z axis of our coordinate system and we represent the rele-
vant fields in dimensionless forms [5]. In addition, we sup-
pose stationary modulations of a circularly polarized car-
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rier wave for the vector potential in the form A(z, t) =
ψ(ξ̃)[x̂ sin(kz − ωt) + ŷ cos(kz − ωt)] with ξ̃ ≡ z − V t,
whereupon introducing the expression for the vector poten-
tial into the governing Maxwell’s equation one readily ob-
tains V = c2k/ω. Manipulation of the governing equations
finally takes us to the point where two coupled equations
must be integrated [2, 3]:

ψ′′ = −1
η
ψ +

V0

p
ψ

[
1

re(φ, ψ)
+

μ

ri(φ, ψ)

]
, (1)

φ′′ =
V0

p

[
(1 + φ)
re(φ, ψ)

− (1 − μφ)
ri(φ, ψ)

]
, (2)

where the primes denote derivatives with respect to ξ ≡
(ωe/c) ξ̃, re(φ, ψ) ≡ √

(1 + φ)2 − p(1 + ψ2), ri(φ, ψ) ≡√
(1 − μφ)2 − p(1 + μ2ψ2), η ≡ ω2

e/ω
2, μ ≡ me/mi,

V0 ≡ V/c, and p ≡ 1 − V 2
0 , with ω2

e ≡ 4πnee2/me as the
plasma frequency, and ne = ni as the equilibrium densi-
ties. We further rescale ω/ck → ω and ωe/ck → ωe in V0,
η and p, which helps to simplify the coming investigation:
η preserves its form, V0 → 1/ω, and p→ 1− 1/ω2. A no-
ticeable feature of the system (1) - (2) is that it can be writ-
ten as a Hamiltonian system of a quasi-particle with two-
degrees-of-freedom. Introducing the momenta Pψ ≡ ψ′

and Pφ ≡ −φ′/p, the equations for ψ and φ takes the form

ψ′ = ∂H/∂Pψ, P
′
ψ = −∂H/∂ψ, (3)

φ′ = ∂H/∂Pφ, P
′
φ = −∂H/∂φ, (4)

where the Hamiltonian H reads

H =
P 2
ψ

2
− p

P 2
φ

2
+

1
2η

ψ2 +
V0

p2

[
re(φ, ψ) +

1
μ
ri(φ, ψ)

]
.

(5)
As we are interested in the propagation of pulses vanishing
for |ξ| → ∞, conditions Pψ = Pφ = φ = ψ = 0 must
pertain to the relevant dynamics, from which one concludes
that E = (V0/p)2 (1 + 1/μ). Considering wave breaking
and instability criteria [5], the entire dynamics must evolve
within the physical region

√
p(1 + ψ2) − 1 < φ <

1
μ

[1 −
√
p(1 + μ2ψ2)] (6)

where we will define the limits as φmin and φmax respec-
tively. Evaluating the linear frequencies of laser and wake-
field small fluctuations ψ′′ = Ω2

ψψ, φ
′′ = −Ω2

φφ, we have

Ω2
ψ ≡ −1/η + 1/p (1 + μ), Ω2

φ ≡ (1 + μ)/V 2
0 . (7)
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The potential φ oscillates with a real frequency Ωφ and, for
the vector potential, Ω2

ψ > 0 (necessary condition for the
presence of instability to reach high-intensity fields from
noise level radiation) and, consequently from relation (7),

1 < ω2 ≤ 1 + ω2
e (1 + μ), (8)

The threshold Ω2
ψ = 0 can be rewritten in the form

ω = ω∗ ≡ √
1 + ω2

e(1 + μ), where ω∗ is the linear dis-
persion relation for electromagnetic waves. If one sits
very close to the threshold, amplitude modulations of ψ
are tremendously slow, while the oscillatory frequency of
φ remains relatively high. This disparity provides the con-
ditions for a slow adiabatic dynamics where, given a slowly
varying ψ, φ always accommodates itself close to the min-
imum of

U(φ, ψ) ≡ −V0/p
2
[
re(φ, ψ) + μ−1ri(φ, ψ)

]
. (9)

When ψ = 0, U has a minimum at φ = 0 which is thus
a stable point in the adiabatic regime. As one moves away
from the threshold, faster modulations and higher ampli-
tudes may be expected to introduce considerable amounts
of nonintegrable behavior and chaos into the system. There
will be cyclic orbits while φ is such that the correspond-
ing potential is not above the level U(φmin). At Fig. 1
the potential ΔU ≡ U(φ, 0) − U(0, 0) is represented for
V0 = 0.99 and μ = 0.0005, parameters characterizing
high-velocity pulses with U(φmax) � U(φmin). Orbits of
region I , φmin < φ < φ̃, will oscillate back and forth, but
orbits in region II eventually reach φmin where re → 0.
Since it can be shown that the electronic density depends on
re in the form ne ∼ r−1

e [2, 3], break down of the theory
indicates wave breaking on electrons.

Also shown in the figure is the wave breaking energy
ΔU(φmin) ≡ Ewbr separating regions I and II

Ewbr =
V 2
o

p2

[
1 +

1
μ
− 1
μVo

√
(1 − μφmin)2 − p

]
(10)

The same figure suggests how nonintegrability affects
localization of our solutions: as one moves away from
adiabaticity and into chaotic regimes, trajectories initially
trapped by U may be expected to chaotically diffuse to-
wards upper levels of this effective potential, escaping from
the trapping region, approaching Ewbr and eventually hit-
ting the boundary at φmin or, in general, attaining re = 0
for ψ 	= 0. If this is so, we have an explanation on how
small amplitude solitons are destroyed, one of the issues of
interest in the subject [9].

NONLINEAR DYNAMICS

We introduce our Hamiltonian phase space in the form
of a Ponicaré surface of section mapping where the pair of
variables (φ, Pφ) is recorded each time the plane ψ = 0 is
punctured with Pψ < 0. The Newton-Raphson method was
used to locate periodic orbits and evaluate the correspond-
ing stability index α which satisfies |α| < (>)1 for stable
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Figure 1: Oscillating (I) and wave breaking (II) regions
for the electric potential at ψ = 0.

(unstable) trajectories [7]. To have a convenient setting of
parameters for fast electron acceleration by wakefields, we
shall keep Vo close to the unit, and thus ω slightly larger
than one (representing wave modes propagating nearly at
the speed of light). After Vo is established, the electron
plasma frequency is calculated as ω2

e = ηω2, η satisfying
condition (8) again.

In all cases analyzed here we take μ = 0.0005 as
in [2] and Vo = 0.99 to represent the high speed con-
ditions of wakefield schemes. Since isolated pulses can-
not be seen in periodic plots we alter slightly the energy
E to E = V0/p

2(1 + 1/ μ) (1 + ε), ε 
 1 so the van-
ishing tail Pψ = Pφ = ψ = φ = 0 is avoided. With
this we convert isolated pulses into trains of quasi-isolated
pulses. The instability threshold for the vector potential
is obtained in the form η∗ = p/(1 + μ) = 0.0198 so
ωe 
 ω as it must be in the underdense plasmas. To
investigate the adiabatic regime of the relevant nonlinear
dynamics we examine phase portraits for η slightly larger
than η∗. In panel (a) of Fig. 2 we set η = 1.00001 η∗.
With such a relatively small departure from marginal sta-
bility, modulations are slow with |Ωφ| � |Ωψ|, adiabatic
approximations are thus fully operative and what we see
in phase space is just a set of concentric KAM surfaces
rendering the system nearly integrable. The central fixed
point corresponds to an isolated periodic orbit since it rep-
resent a phase locked solution that return periodically to
ψ = 0, φ → 0, and the surrounding curves depict regimes
of quasiperiodic, non-vanishing fluctuations of φ. Reso-
nant islands are already present but still do not affect the
central region of the phase plot where the solitary solution
resides. When η grows the behavior of the central fixed
point can be observed in terms of its stability index: ini-
tially it oscillates within the stable range marking the exis-
tence of a central elliptic point near the origin; then, when
it reaches α = +1, no central orbit is found. This indi-
cates a tangent bifurcation with a neighbouring orbit which
terminates the existence of the central point [8]. Immedi-
ately after tangency, the phase plot at ψ = 0 is still con-
stricted to small values of φ as seen in Fig. 2(b) where
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Figure 2: (a) Phase plot near the modulational instability
threshold, with η = 1.00001η∗; (b) phase plot after the
inverse tangency , with η = 1.0001η∗. ε = 10−11.

η = 1.0001η∗. To show that larger values of η cause diffu-
sion towards upper levels ofU(φ), we have investigated the
behaviour of the energyEφ ≡ pP 2

φ/2+ΔU corresponding
to the electrostatic field φ, working with the compact vari-
ables eφ ≡ χe Eφ/(χe + Eφ) and Φ ≡ χφ φ/(χφ + |φ|),
where χe,φ represent the scale above which the correspond-
ing variables are compactified (both setted to 0.0001). For
η = 1.00021η∗ as in Fig. 3 , the central fixed point no
longer exist. In addition to that, KAM surfaces no longer
isolate the central region of the phase plot and diffusion is
observed. The quasi-particle moves towardEwbr and even-
tually arrives at this critical energy producing wave break-
ing on electrons. At this point the simulation stops with
the electron density diverging to infinity. Diffusion is ini-
tially slow and becomes faster as energy increases. One
sees voids in the diffusion plots which correspond to res-
onant islands in the phase space, so as diffusion proceeds
the quasi-particle escalates along the contours of the res-
onances that become progressively larger as already men-
tioned - this is why the process is initially slow, becoming
faster in the final stages. For larger values of η no reso-
nance is present and the quasi-particle moves quickly to-
ward Ewbr . In case of Fig. 3 one can still see various
pulses before wave breaking, but when η is so large that
resonances are no longer present, wave breaking can be in-
stantaneous. We finally note the following relevant fact.

Figure 3: Dynamics as represented in the eφ versus Φ
space: η = 1.00021η∗, ewbr ≡ χeEwbr/(χe + Ewbr).

For Vo → 1, it is known that the amplitude of the electro-
magnetic pulses are small [9]. But as one goes beyond the
adiabatic regime, our discussion on diffusion allows to con-
clude that even small initial pulses eventually reach very
high amplitude values for the plasma waves, which pro-
vides the condition for formation of strong electric fields
with the corresponding implications on particle accelera-
tion.

We read all these features as it follows. For small enough
η’s there are locked solutions representing isolated pulses
coexisting with surrounding quasiperiodic solutions where
φ does not quite vanish when ψ does. As η increases past
the mentioned tangent bifurcation but prior to full destruc-
tion of isolating KAM surfaces, one reaches a regime of
periodical returns to ψ = 0, although in the presence of a
slightly chaotic φ motion. Those cases where ψ = 0 but
φ 	= 0, correspond to quasineutral ψ pulses accompanied
by trails of φ activity as described in [10] and [11]. We
see that trails can be regular or chaotic. Finally, for large
enough η’s, KAM surfaces no longer arrest diffusion and
wave breaking does occur as re → 0, as we have checked.
At this point adiabatic motion is lost and this is likely to
correspond to that point where small amplitude solitary so-
lutions are entirely destroyed as commented in [9] and [6].
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