
GUINEA-PIG++: AN UPGRADED VERSION OF THE LINEAR
COLLIDER BEAM-BEAM INTERACTION SIMULATION CODE

GUINEA-PIG.

C. Rimbault∗, P. Bambade, O. Dadoun, G. Le Meur, F. Touze,
LAL, Univ Paris-Sud, IN2P3/CNRS, Orsay, France

M. del C. Alabau, IFIC, Valencia, Spain
D. Schulte, CERN, Geneva, Switzerland

Abstract

GUINEA-PIG++ is a newly developed object-oriented
version of the Linear Collider beam-beam simulation pro-
gram GUINEA-PIG. The main goals of this project are
to provide an reliable, modular, documented and versa-
tile framework enabling convenient implementation of new
features and functionalities.

INTRODUCTION

GUINEA-PIG++ (GP++) is a new developed object-
oriented version of the beam-beam interation simulation
C code GUINEA-PIG (GP) [1]. This tool is used by a
large part of the linear collider community, since it of-
fers a high modelisation level of electromagnetic and quan-
tum phenoma occuring during a e−beam-e+beam colli-
sion [2]. It provides beam particle distributions after in-
teraction as well as background (beamstrahlung, pair pro-
duction, hadrons, Compton scattering...) and luminosity
spectra, for which purely analytical treatment does not ex-
ist.
To facilitate the implementation of new features and code
extensions, GP was converted in C++, GP++, since object
oriented programming offers many advantages. An object
is an instantiation of a specifying class. It combines data
with functions (methods) accessing the data or modifying
it. All classes are organized in a class hierarchy (by inher-
itance), enabling the use of common code. Such a struc-
turing leads to more flexibility and extensibility. In fact,
the data being local rather than global, code evolution be-
comes easier. Moreover, new objects and their behavior
can be defined as incremental modifications and extensions
of existing objects. Finally, the code is written in terms
of similarities more than differences, this allows the sepa-
ration of general structures from specific implementations
(abstraction).

DESCRIPTION OF GP++ VERSION

Starting from the GP C version, the original algorithms
are first kept. The structures existing in the GP C version
become classes in the C++ one, so that most of the “static”
data are put into objects, getting local to classes. Thereby,

∗ rimbault@lal.in2p3.fr

it becomes easier to control their scope and their manage-
ment. So done, it should be possible to reconsider some
class structuring or algorithms to improve the code effi-
ciency.
The GP++ code is managed using the configuration man-
agement tool CMT, first developed at LAL-Orsay [3]
and designed to formalize sofware production around a
package-oriented principle. The environment provides
conventions (to name and address packages, files and di-
rectories) and tools to automate so far as possible the im-
plementation of these conventions. It allows to describe the
configuration requirements and to infer automatically the
effective set of configuration parameters needed to build or
run the packages. The management of the code environ-
ment is thus very secure.
The versioning, updating and releasing of GP++ are
achieved with the collaborating version manager SVN [4],
succeeding to CVS. It provides up-to-date tools derivated
from the long experience of CVS. The main feature of SVN
is to enable a good tracking of all operations made by all
developers, offering a web interface and a clever visualiza-
tion of the differences between any given revisions.
GP++ is developed and distributed using the web software
collaborating development tool TRAC [5].
Recoding GP from C to C++ had no consequences on CPU
time and an improvement of performances should be ob-
tained reorganising and modifying some algorithms. This
was tested measuring speed of execution of GP and GP++
running on a Darwin computer architecture. As an illustra-
tion, the amount of CPU time spent for varying numbers of
particles is shown in table 1.

Macroparticles 104 105

GP 0:56.71 11:14.37
GP++ 0:54.07 7:33.58

Table 1: Comparison of the amounts of CPU time, in min-
utes, spent to run GP and GP++, for two different number
of macroparticles used in the simulation.

The GP++ was validated testing several variables, as
the luminosity, the beam particle distributions, the angular
variables displayed in figure 1, the background spectra, like

THPMN010 Proceedings of PAC07, Albuquerque, New Mexico, USA

03 Linear Colliders, Lepton Accelerators and New Acceleration Techniques

2728

A03 Linear Colliders

1-4244-0917-9/07/$25.00 c©2007 IEEE

for the electromagnetic pairs shown in figure 2 or Compton
scattering shown in figure 3. Comparisons between GP and
GP++ results, produced for the Nominal ILC beam param-
eter set, present a very good agreement. The small differ-
ences are due to some branching statements made on crite-
ria based on random values, depending on floating variable
representation.

Figure 1: Angular divergence of the beam particles after
interaction for Nominal ILC beam parameters, produced
with GP (in black) and GP++ (in red).

Figure 2: Logarithmic distributions of the electromag-
netic pair background transverse momenta for Nominal
ILC beam parameters, produced with GP (in black) and
GP++ (in red).

NEW FEATURES

GP++ offers new running features. The original random
number generator assumed a 32-bits computer. In GP++, a

Figure 3: Distributions of the electron energy in the Comp-
ton electron process for Nominal ILC beam parameters,
produced with GP (in black) and GP++ (in red).

new algorithm, Haynes’algorithm [6], is added in order to
enable the code to run on 64-bit computers and the conve-
nient random generator is checked before the computation.
In addition, a new keyword rndm seed allows to choose
a specified seed for the random generation, this is particu-
larly useful to generate simultaneous runs requiring differ-
ent random sequences. This new option was tested running
GP++ on the LCG-EGEE [7] GRID under ILC Virtual Or-
ganisation to produce high statistic GP++ files [8].
Physics simulation is also improved, with the possibility
to apply beam-beam space charge effects on a sample of
Bhabha events, using dedicated code to generate the input
file. This developement is detailed in [9, 10] and was used
to studied the impact of beam-beam effects on luminosity
measurement at the ILC.

PERFORMANCE OPTIMISATION

Since beam-beam interaction simulation is often used in
a full accelerator simulation, for example to study bunch
stability or feedback procedures, it is important to opti-
mise the computation time. In the simulation, the beam
particles are replaced by typically 20000-500000 macro-
particles. The beams are cut longitudinally into slices, each
slice of one beam interacting with each slice of the other
beam. Slices are transversally cut into cells, and the charge
of the macro-particles is distributed onto this grid accord-
ing to their position. Then the potentials on the grid points
are evaluated and from the forces on the particles. This
computation is the most time consuming operation (as long
as background computations are not involved). To inte-
grate the field equations, it is important to use the discrete
Fourier Transform option, provided by the Fastest Fourier
Transform in the West (FFTW) library (the computation
time is then reduced about a factor four compared to the lo-

Proceedings of PAC07, Albuquerque, New Mexico, USA THPMN010

03 Linear Colliders, Lepton Accelerators and New Acceleration Techniques

1-4244-0917-9/07/$25.00 c©2007 IEEE

A03 Linear Colliders

2729

cally programmed FFT). An interface with the latest 3.2.1
version of FFTW [11] was implemented.
The computation of a large number of particle interac-
tions is time consuming as well. Good speedup could
be expected with parallel computing. An approach us-
ing Message-Passing Interface (MPI) [12] is under devel-
opment: a simple way to implement a parallel algorithm
would be to distribute particles among nodes and perform
associated computations on each assigned CPU.

FURTHER DEVELOPMENTS

Abstract Input/Output (I/O) interface enables to change
the program design. Abstract classes are an appropriate
way to allow user’s application to plug any I/O formats as
well as graphical interfaces. GP++ currently operates with
ASCII format. For future intensive ILC simulations, other
formats could be considered, like for example HDF5 [13]
which is a general purpose library and file format for sci-
entific data storing.
The specifications of the grid used to compute the beam-
beam interaction are defined by the user. One needs to en-
ter consistent dimensions and numbers of cells, according
to the beam-beam configuration. For some particular cases
(large offsets, large disruption...), it can be difficult to find
an appropriate grid parameter computing set. For this rea-
son, automatic consistency checks and adjustments of in-
ternal computational grid parameters are under study.
Concerning the physics, implementation in GP++ of the
spin depolarization is the next main development.

DOCUMENTATION

All informations concerning GP++ can be found from
this address: https://trac.lal.in2p3.fr/GuineaPig.
This web site consists of, among other things:

• a wiki page containing all informations, documenta-
tions and links for downloading the code.

• An interface for browsing the SVN repository allow-
ing one to access to all the versions of the code stored
in the SVN repository.

• A ticket management system.

The ticket management system provides an efficient tool
for bug reporting or suggesting improvements and devel-
opments.

ACKNOWLEDGEMENT

This work is supported by the Commission of the Euro-
pean Communities under the 6th Framework Programme
“Structuring the European Research Area”, contract num-
ber RIDS-011899.

REFERENCES

[1] D. Schulte, Ph. D. Thesis, University of Hamburg 1996.
TESLA-97-08.

[2] K. Yokoya, P. Chen, “Beam-beam phenomena in linear col-
liders”, KEK Preprint 91-2, April 1991.

[3] http://www.cmt.site.org

[4] http://subversion.tigris.org

[5] https://trac.lal.in2p3.fr/GuineaPig

[6] D. E. Knuth, “ The Art of Computer Programming”, Vol-
ume 2: Seminumerical Algorithms, 3rd edition (Addison-
Wesley, Boston, 1998).

[7] http://public.eu-egee.org/

[8] http://flc-mdi.lal.in2p3.fr

[9] C. Rimbault, P. Bambade, K. Mönig, D. Schulte, “Impact of
beam-beam effects on precision luminosity measurements
at the ILC”, EUROTeV-Report-2007-017, to be published.

[10] C. Rimbault, P. Bambade, K. Mönig, D. Schulte, “Bias
on Absolute Luminosity Measurements at the ILC from
Beam-Beam Space Charge Effects”, PAC07 conference,
FRPMN012.

[11] http://www.fftw.org/

[12] http://www-unix.mcs.anl.gov/mpi/

[13] http://hdf.ncsa.uiuc.edu/HDF5/

THPMN010 Proceedings of PAC07, Albuquerque, New Mexico, USA

03 Linear Colliders, Lepton Accelerators and New Acceleration Techniques

2730

A03 Linear Colliders

1-4244-0917-9/07/$25.00 c©2007 IEEE

