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Abstract 
Common to various front end designs for a muon 

collider or neutrino factory are costly low frequency RF 
cavities used to bunch muons.  In this paper we show that 
adding higher harmonic RF cavities to the bunching 
section of a muon capture channel can provide as good or 
better bunching efficiency than the case where only the 
fundamental is used.  Since higher harmonic cavities are 
less expensive to build and operate, this approach implies 
significant cost savings.  

INTRODUCTION 
For a neutrino factory or muon collider, short, intense 

bunches of protons are focused onto a target to produce 
pions, which decay into muons that are then accelerated 
into a high-energy storage ring.  In a muon collider, 
muons and anti-muons are collided; in a neutrino factory, 
the muons decay to provide beams of high-energy 
neutrinos [1, 2, 3]. In either case, the challenge is to 
collect and accelerate as many muons as possible.  The 
pions (and resulting muons) are initially produced within 
a short bunch length but with broad transverse and 
longitudinal energy spreads, much larger than the 
acceptance of any accelerator.  In this paper we consider 
improving the ability to capture the longitudinal energy 
spread with higher frequency cavities.  Since the aperture 
of such cavities is reduced, this approach assumes that 
their transverse acceptance is adequate for a sufficient 
subset of muons or that transverse beam cooling is 
involved. 

In the portion of the front end addressed by this 
strategy, pions and muons drift from the production 
target, lengthening into a long bunch with a high-energy 
“head” and a low-energy “tail”.  These particles would 
then be placed in an accelerating system that decelerates 
the head and accelerates the tail and forms the beam into  
a bunch that can then be cooled and accelerated for the 
μ+-μ- Collider or neutrino factory. 

APPARATUS AND CHALLENGE 
The front end system up to and including the low 

frequency RF (LFRF) portion that is under study here is 
shown in Figure 1.  Eight GeV protons are targeted onto a 
30 cm long Fe rod that is encapsulated in a 20 T solenoid. 

 Pions created from the target (and a very small number of 
prompt muons) are captured by having their transverse 
component of momentum rotated into the longitudinal as 
they traverse the 10 m long tapered solenoid which starts 
at 20 T and 7.5 cm radius at the target and tapers off to 2 
T and 22.5 cm radius at the far end, where the RF cavities 
begin.  The LFRF cavity section stretches for up to 100 

meters, with each cavity being 20 cm long, operating with 
maximum gradient of 3 MV/m, and for purposes of this 
study, is a simple pillbox.  The baseline RF frequency is 
25 MHz.  The entire LFRF cavity region is surrounded by 
a 2 T solenoid to contain the charged particles.  
Simulations were performed in G4beamline [4]. 
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Figure 1: Simulated apparatus for Study of Harmonics in 
LFRF Cavities.  The 8 GeV proton beam and 30 cm long 
Fe target are aligned together, but are 100 mrad off angle 
with respect to the axis of the tapered solenoid (10 m 
long) and LFRF cavities. 

Muons and pions exiting the tapered solenoid exhibit 
the long bunch structure shown in Figure 2, consisting of 
a high-energy head for early arriving particles and a low 
energy tail for late arrivals.  The challenge is to reduce the 
muon and pion momentum spread to maximize the yield 
of muons in the overall process. 

 
Figure 2:  Momentum [MeV/c] vs. time of arrival [nsec] 
for μ+s + π+s at end of the tapered solenoid. 

 
STRATEGY FOR LOW RF CAVITIES 
The basic concept is straightforward and has been 

previously studied [5], although not from the present 
perspective of cutting costs.  The idea is to widen the 
effective portion of the E field over which bunching of 
muons and pions take place.  A “sawtooth” RF waveform, 
as shown in Figure 3, should be optimal. 
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Figure 3:  Idealized sawtooth waveform that the LFRF 
cavities will approximate. ___________________________________________  

*Supported in part by DOE STTR grant DE-FG02-05ER86252 

Proceedings of PAC07, Albuquerque, New Mexico, USA THPMN106

03 Linear Colliders, Lepton Accelerators and New Acceleration Techniques

1-4244-0917-9/07/$25.00 c©2007 IEEE

A09 Muon Accelerators and Neutrino Factories

2957



 
Since the RF cavities operate at a single frequency, our 

strategy is to create a lattice structure that incorporates 
prorated amounts of RF cavities at particular harmonics 
following the Fourier transform of the sawtooth 
waveform.  The form of the Fourier transform is: 
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G4beamline is used to study the effect of  adding the 
second harmonic (up to n=2 in equation 1) by introducing 
an RF cavity operating at double the base frequency every 
second, third, fourth, or fifth cell.  Based on equation 1, 
incorporating an RF cell operating at double the base 
frequency should occur once every third cell.  In the 
present model each RF cell has equal length (20 cm) and 
gradient (3 MV/m), but differing harmonic frequencies.  
Effects of adding third and fourth harmonic cells are also 
evaluated.  Construction of the RF lattice to incorporate 
up to the third harmonic will be illustrated; the same 
method applies to create lattices with higher harmonics.  
Table 1 shows how the weight associated with each 
harmonic is derived as well as the corresponding size of 
the lattice, which is 11 RF cells for this case.  Figure 4 
displays the layout of a lattice following such weights.  
The algorithm places cells with same harmonic at uniform 
spacing, with lower n value prevailing due to its higher 
weight where there is a conflict in cavity placement.  
Figure 5 shows the resultant yield of μ+ + π+ for cases of 
free drift (no RF implemented), single harmonic (25 
MHz), incorporating second harmonic at varying 
intervals, and implementations including third and fourth 
harmonics of 25 MHz.  Table 2 lists the maximum yield 
for each of the cases.  A resultant RF lattice to implement 
in a muon collider or neutrino factory would extend to an 
optimal length of 20 to 30 meters. 

 
Table 1:  Weights of frequencies in constructing RF 
lattices incorporating up to third harmonic.  Second 
column is weight associated with particular frequency as 
given by Fourier Transform in equation 1.  Third column 
is weight normalized by sum of weights of the 3 
frequencies involved.  Denominator in third column, 11, is 
size of lattice. 

Harmonic n Weight ~ 1/n Weight with respect to top 3 
frequencies 

1 1/1 = 6/6 (6/6)/(6/6+3/6+2/6) = 6/11 
2 1/2 = 3/6 (3/6)/(6/6+3/6+2/6) = 3/11 
3 1/3 = 2/6 (2/6)/(6/6+3/6+2/6) = 2/11 
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Figure 4: Layout of RF cells in a lattice with up to third 
harmonic.  
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Figure 5:  Yield of μ+ + π+ with 100 MeV/c ≤ momentum 
≤ 200 MeV/c.  “Free” refers to no RF applied; μ+s and π+s 
drift freely.  “H1” corresponds to case of only base 
frequency of 25 MHz.  “H2: N=n” refers to case of 
second harmonic cavity being placed every nth cell.  “H3” 
refers to use of up to third harmonic as illustrated in 
Figure 4.  “H4” refers to use of up to fourth harmonic, 
which has a lattice of size 25 cells.  Statistical error is 
approximately 2% of the yield values. 

 
Table 2: Maximum yields of lattices utilizing various 
harmonic schemes.   

Lattice Type Max Yield of μ+ & π+ / 
Proton on Target / GeV 

Optimal Depth (meters) 

Free Drift 1.09 +/− 0.02% 30-35 
H1 1.42 +/− 0.03% 20 
H2: N=2 1.44 +/− 0.03% 25 
H2: N=3 1.46 +/− 0.03% 25 
H2: N=4 1.46 +/− 0.03% 25 
H2: N=5 1.46 +/− 0.03% 20-25 
H3 1.43 +/− 0.03% 25 
H4 1.39 +/− 0.03% 25-30 

 
Although the various RF scenarios provide similar 

yields numerically, there are qualitative properties that 
may reveal quantitative differences downstream when 
further stages are involved. Figure 6 shows momentum 
versus time for select cases.  Optimal yields for all cases 
incorporating multi-harmonics occurred ~25 m from the 
start of the RF section.  At that distance, Figure 6(a) 
shows that the spread in time has increased for freely 
drifting μ+s + π+s when compared to these particles first 
entering the RF cavities in Figure 1.  Figure 7 illustrates 
the analytical E field associated with the lattices for cases 
displayed in Figure 6.  For example, Figure 6(b) shows p 
vs. t for application of RF with base harmonic; Figure 
7(b) displays the simple corresponding sine wave.  The 
time period of the base 25 MHz frequency, and hence all 
other cases implementing harmonics, is 40 nsec.  In case 
of H1, the effective portion of the sinusoid that has the 
correct slope direction to coalesce μ+s + π+s is only half of 
the 40 nsec period.  Figure 6(b) reveals a coalescing 
window that is consistent with ~20 nsec.  Figures 6(c) and 
7(c) show a consistent picture of coalescing where an 
opposite sign for slope in middle of coalescing window 
results in a thinning of the momentum band at the center 
of the window.  Results in Figures 6(d,e,f) show a flatter 
distribution in momentum, which is desired and can be 
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explained by their correspondingly better E field 
approximations in Figures 7(d,e,f) to the sawtooth 
waveform in Figure 3.  Qualitatively, it is expected that a 
momentum spread that is more uniform will result in 
better overall capture efficiency when other elements 
downstream are incorporated. 

 
 

(a) Free Drift  
@ 25m 

(b) H1 
@ 20m 

 

(c) H2: N=2 

@ 25m 

(d) H2: N=3 

@ 25m 

 

 

(e) H3 
@ 25m 

(f) H4 

@ 25m 

 

Figure 6: Momentum (MeV/c) versus time (nsec) for μ+s 
+ π+s. (a) Freely drifting μ+s + π+s at optimum z=25 
meters for cases incorporating harmonics.  (b) RF with H1 
at optimal yield, z=20 meters.  (c)-(f)  Select harmonic 
configurations at z=25 meters.  The caption for Figure 5 
contains the explanation of H and N conventions. 

 

 

(a) No E Field 
(b) sin(x) 

 

(c) sin(x) – sin(2x) 
(d) sin(x) – 0.5sin(2x) 

 

(e) sin(x) – 0.5sin(2x) 
 + 0.333sin(3x) 

(f) sin(x) – 0.5sin(2x) 
+ 0.333sin(3x) 
 – 0.25sin(4x) 

 
Figure 7: Analytic expressions of E field in various 
harmonic configurations.  Cases correspond to those in 
Figure 6. Range on the x axis is a 25 MHz RF cycle 
(40ns). 

COST CONSIDERATIONS 
A critical criterion for RF configurations is cost.  

Assuming cost of construction and operation (wall plug 
power) scales with the volume of the RF elements (or 
stored energy) and that the cavity radius is inversely 
proportional to the frequency, one can calculate relative 
costs for these multi-harmonic lattices.  Table 3 contains 
results of such calculation.  Although the H2 N=4,5 
lattices are cheaper per unit length than H1, they cannot 
make up for cost of added length of 5 m.  However, other 
multi-harmonic lattices are more cost effective than H1.  
Note that the size of the lattice for H3 is 11 RF cells, H4 
is 25, and H5 is 137.  Because of relatively small 
advantages and this greater complexity, we do not 
consider using 5 or more harmonics. 

 

Table 3: Yields and relative costs of harmonic lattices.  
Cost analysis only assumes cost scales with cavity 
volume. 

 
Lattice Type 

Max Yield of μ+ & π+/ 
Proton on Target / GeV 

RF Cost Relative to 
Using Single Frequency 

Free Drift 1.09 +/− 0.02% 0% 
H1 1.42 +/− 0.03% 100% 
H2: N=2 1.44 +/− 0.03% 78.13% 
H2: N=3 1.46 +/− 0.03% 93.75% 
H2: N=4 1.46 +/− 0.03% 101.56% 
H2: N=5 1.46 +/− 0.03% 106.25% 
H3 1.43 +/− 0.03% 79.23% 
H4 1.39 +/− 0.03% 70.66% 

 
CONCLUSION 

As demonstrated above, incorporation of RF with base 
harmonic or multi-harmonics considered in various ways 
yielded similar results.  However, distributions in p vs. t 
show qualitative differences that reveal potentially higher 
yields with the use of higher harmonics.  Introducing cost 
into the decision reveals an even larger impetus to use 
higher harmonics.  The lattice for H4 (25) provides ~29% 
reduction in cost compared to a lattice using only the base 
RF, and this lattice has the potential for higher yields 
downstream.  Hence, if the front end design for a future 
muon collider or neutrino factory uses LFRF, an H4 type 
lattice (as in Figure 8) could be used to significantly lower 
costs and provide at least as good or better efficiency. 
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 Figure 8: Layout of RF cells in the lattice to incorporate 
frequencies up to the fourth harmonic. 
 

The study here applied equal E field gradients for each 
harmonic.  In general, we expect to be able to obtain 
higher gradients at higher frequencies.  Future 
investigations will reveal if this can be exploited to use 
higher gradients in a smaller number of higher frequency 
RF cavities such that the overall weight assigned to the 
harmonic is maintained, resulting in further cost 
reduction. 
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