
E. Stern, J. Amundson, P. Spentzouris, A. Valishev, Fermilab, Batavia, IL 60510, USA
J. Qiang, R. Ryne, LBNL, Berkeley, CA 94720, USA

Abstract

We present status of development of a 3D Beam-Beam
simulation code for simulating the Fermilab Tevatron col-
lider. The essential features of the code are 3D particle-
in-cell Poisson solver for calculating the Beam-Beam elec-
tromagnetic interactions with additional modules for lin-
ear optics, machine impedance and chromaticity, and mul-
tiple bunch tracking. The simulations match synchro-
betatron oscillations measured at the VEPP-2M collider.
The impedance calculations show beam instability devel-
opment consistent with analytic expressions.

MOTIVATION

The Fermilab Tevatron [1] is a p-p̄ collider in which
counter-rotating beams of 36 bunches of both particle
species share a common vacuum pipe. For high-energy
physics operations, the beams collide head-on at two spe-
cific interation points (IPs), but parasitic collisions occur
at 136 other locations. The intentional and unintentional
beam-beam interactions produce coherent motion of mul-
tiple bunches. Impedance and beam-beam effects in ex-
tended length bunches couple longitudinal motion to trans-
verse degrees of freedom. The accelerating RF fields in the
longitudinal direction provide an energy source that when
coupled to the transverse motion can produce instabilities.
Understanding the interplay between all these effects re-
quires developing a comprehensive simulation. We will
present progress in the development of such a simulation,
with validation of the subcomponents against observed ef-
fects and analytic calculations.

BEAMBEAM3D CODE

The Poisson solver in the BeamBeam3d code is de-
scribed in references [2]. Bunches of macro-particles in
two beams are generated with a random distribution in
phase space. The accelerator ring is conceptually divided
into arcs with potential interaction points at the ends of the
arcs. The optics of each arc is modeled with a 6 × 6 lin-
ear map that transforms the phase space {x, x′, y, y′, z, δ}
coordinates of each macroparticle from one end of the arc
to the other. There is a significant amount of coupling be-
tween the horizontal and vertical transverse coordinates in
the Tevatron. For our Tevatron simulations, the maps were
calculated using coupled lattice functions citeOptim1 ob-
tained by fitting a model [4] of beam element configuration
to beam measurements. The synchrotron motion is put in
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as a sinusoidal oscillation with the periodicity of the ma-
chine synchrotron tune. The Tevatron includes electrostatic
separators to generate a helical trajectory for the oppositely
charged beams. The mean beam offset at the IP is included
on the Poisson field solver calculation.

Different particle bunches are individually tracked
through the accelerator. They interact with each other with
the pattern and locations that they would have in the real
accelerator.

The impedance model uses the dipole component of re-
sistive wall wakefields [5]. Each beam bunch is divided
longitudinally into slices containing approximately equal
numbers of particles. As each bunch is transported through
an arc, particles in a slice receive a Δx′ kick from the wake
field induced by the dipole moment of the particles in for-
ward slices. The kick from slice i is:
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The length of the arc is L, Ni is the number of particles in
slice i, zi is the longitudinal distance between the particle
and the slice that induces the wake, �ri is the mean trans-
verse position of particles in slice i, b is the pipe radius, c is
the speed of light, σ is the conductivity of the beam pipe
and βγ are Lorentz factors of the beam.

SYNCHRO-BETATRON COMPARISONS

Coherent synchro-betatron modes, observed in an exper-
iment at the VEPP-2M 500 MeV e+e− collider and de-
scribed in reference [6] are an unambiguous marker of
beam-beam interactions and provide sensitive tool for eval-
uating calculational models. In the case of a colliding beam
accelerator where the longitudinal bunch length and the
beta function are of comparable size, particles at different z
positions are coupled through the electromagnetic interac-
tion with the opposing beam. Coherent modes develop with
tune spectra that are sums and differences of the betatron
and synchrotron tune. The tune shifts for different modes
have a characteristic evolution with beam-beam parameter
ξ = Nr0/4πε, N is the number of particles, r0 is the clas-
sical electromagnetic radius, and ε is the emittance.

We simulated the VEPP-2M collider using Courant-
Snyder uncoupled maps. The horizontal emittance in
VEPP-2M beam much larger than the vertical emittance.
The bunch length (4 cm is comparable to β ∗

y = 6 cm so
we expect to see synchrobetatron modes. In order to ex-
cite synchrobetatron modes, we set an initial y offset of
one beam sigma approximately matching the experimental
conditions.

DEVELOPMENT OF 3D BEAM-BEAM SIMULATION FOR THE
 TEVATRON*

Proceedings of PAC07, Albuquerque, New Mexico, USA TUODC02

05 Beam Dynamics and Electromagnetic Fields

1-4244-0917-9/07/$25.00 c©2007 IEEE

D05 Code Developments and Simulation Techniques

905



 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 0.07  0.08  0.09  0.1  0.11  0.12  0.13  0.14  0.15

po
w

er
 (

ar
bi

tr
ar

y 
un

its
)

tune

a b c

Figure 1: Simulated mode spectra in the VEPP-2M collider
with ξ = .008 showing synchrobetatron modes. The line
indicated by a) is the base tune, b) is the first synchrobeta-
tron mode, c) is the beam-beam π mode.

Figure 2: The diamonds show simulated synchrobetatron
modes as a function of beam-beam parameter ξ (diamonds)
of observed modes (points).

Longitudinal effects of the beam-beam interaction were
simulated by dividing the bunch into six slices. At the in-
teraction point, bunches drift through each other. Particles
in overlapping slices are subject to a transverse beam-beam
force calculated by applying a kick from the electric field
determined by solving the 2D Poisson equation for parti-
cles in the overlapping beam slice. Fig. 1 shows an exam-
ple spectrum from a simulation with the three mode peaks
indicated.

In Fig. 2, the BeamBeam3d simulation of synchrobeta-
tron modes as a function of ξ is plotted on top of experi-
mental data from VEPP-2M. As can be seen, there is good
agreement between the observation and simulation giving
us confidence in the beam-beam calculation.

IMPEDANCE TESTS

Wakefields or equivalently impedance in an accelerator
with a conducting vacuum pipe gives rise to well known
instabilities. Our aim in this section is to demonstrate that
the wakefield model in BeamBeam3d quantitatively repro-
duced those theoretically and experimentally well under-
stood phenomena. The strong head-tail instability exam-
ined by Chao [5] arises in extended length bunches in the
presence of wakefields. For any particular accelerator op-
tical and geometric parameters, there is an an intensity
threshold, above which the beam becomes unstable.

We divide the Tevatron ring into 12 arcs. The betatron
tune of the machine is on the order of 20.5, so the appar-
ent tune from the Fourier spectrum sampling 12 times per
turn is the the actual tune modulo 12. Using a pipe ra-
dius of 3 cm and a bunch length of 20 cm produces the
spectrum shown in Fig. 3a for a bunch of 4 · 1012 protons
at 150 GeV. The two mode peaks are clearly evident. The
upper peak is betatron frequency 8.574 shifted down by the
wakefield. The lower peak is the lower synchrobetatron
mode 8.574− .007 shifted upwards by the wakefield.

In Fig. 3b, we show the evolution of the two modes
as a function of beam intensity. We show two sets of
curves for two slice and six slice wakefield calculations.
In Chao’s derivation, instability develops when the quan-
tity Υ = πNr0W0L/4(2π)2γνβνs ≥ 2 where νβ and νs

are the betatron and synchrotron tunes, L is the length of
the ring, and W0 is the wakefield factor defined previously.
With the parameters of this simulation, the formula pre-
dicts instability development at intensities of about 9 · 1012

particles. However this formula assumes an airbag particle
distribution instead of a Gaussian distribution, and a con-
stant wakefield that only effects the bunch tail instead of
the more realistic situation of the field decreasing with dis-
tance.

The growth rate per turn of dipole motion at the thresh-
old of strong head-tail instability has a parabolic depen-
dence on beam intensity. The wakefield calculation also
reproduces this feature as shown in Fig. 4.

Chromaticity interacts with impedance to cause a dif-
ferent head-tail instability. Going arc-by-arc, chromatic-
ity results in an additional phase advance δμx(y) =
μ0ξx(y)Δp/p where ξx(y) is the chromaticity for x (or y)
and μ0 is the design phase advance for the arc. In transport-
ing particles through an arc in the presence of chromaticity,
a new coupled map is calculated for each particle using the
coupled lattice functions at the beginning and ending of the
arc with the additional phase advance.

We simulated a range of beam intensities and chro-
maticity values. The two particle model, and the more
general Vlasov equation calculation [5] indicate that the
growth rate scales by the head-tail phase 2πξνβ/cη, η is
the slip factor of the machine and ẑ is a measure of the
bunch length. This phase is a measure of how much be-
tatron oscillations are affected by chromaticity over the
length of the bunch. When the growth rate is normalized
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Figure 3: a) Simulated spectrum of a two slice bunch in the presence of wakefields showing two modes. b) Evolution
of the mode frequencies as a function of beam intensity showing the two modes coming to a common frequency. The
simulations are shown for two slice and six slice wakefield calculation.
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Figure 4: The growth rate of dipole motion in the simulated
accelerator with impedance as a function of beam intensity
as the strong head-tail threshold is reached.

by Nr0W0/2πβγνβ which includes the beam intensity and
geometric factors, we expect a universal dependence of
normalized growth versus head-tail phase that begins lin-
early with head-tail phase and peaks around -1. Fig. 5
shows the simulated growth rate at three intensities with
a range of chromaticites from −.001 to −0.5 to get head-
tail phases in the 0 to −1 range. The normalized curves are
nearly identical and peak close to head-tail phase of unity.
The deviation from a universal curve is again due to differ-
ences between the idealized model and detailed simulation.

SUMMARY

We have validated the correctness of modules that simu-
late beam-beam interactions, resistive wall impedance, and
chromaticity in a combined accelerator model. With mul-
tiple bunch tracking, we are now able to investigate their
contributions to instability development.
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Figure 5: The normalized growth rate of dipole motion in
the simulated accelerator with impedance and chromaticity
as a function of head-tail phase at three beam intensities.
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