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Abstract
The linear-field non-scaling FFAG lattices originally

proposed for multi-GeV muon acceleration are now being
modified for � 200 MeV/u proton or carbon medical appli-
cations. The momentum range is large and the chromatic
tune variation is significant. In the medical case, the is-
sue of resonance crossing is acute owing to the lower rate
of energy gain. Quadrupole magnets with non-normal en-
try/exit faces are considered as means to reduce the tune
variation. Thus one is motivated to study the fringe-field
effects of quadrupole magnets with rotated entry/exit faces.
However, just as a bending (dipole) magnet fringe-field
Bf ∝ reiθ is found to give a focusing effect, so we ex-
pect the fringe field of a quadrupole magnet, Bf ∝ r2ei2θ ,
with rotated pole faces to give amplitude-dependent im-
pulses reminiscent of a sextapole magnet. This note is a
precis of two laboratory reports[11, 12].

INTRODUCTION
Our motivation is the design of non-scaling FFAGS, for

proton therapy of cancer patients. In these machines, par-
ticle beams are accelerated over a wide range of momenta
(100% or more) at constant magnetic field. The change in
beam rigidity implies that betatron oscillation frequencies
fall with momentum. It is anticipated that this effect can be
mitigated by giving the higher momentum particles longer
path lengths through the magnets, as is achieved by wedge-
shaped elements.

Thus we consider fringe field effects for magnets with
rotated pole faces; that is to say the entry and exit faces
are not perpendicular to the reference trajectory through
the magnet. Our derivation differs from those offered in
standard texts [1, 2, 3, 4] in being entirely algebraic, which
has the advantage that is may be readily adapted to an arbi-
trary multipole. Fringe-field effects for quadrupoles with-
out pole-face rotations have a long history[5, 7, 8]. Fringe-
field effects in dipoles have an even longer history[6] ass-
sociated with their use as spectromter magnets.

QUADRUPOLE FRINGE FIELD EFFECTS
The basic configuration is that of a rectangular

quadrupole magnet described in terms of a cartesian system
[x, y, z] with the z-axis colinear with the zero-field centre
line of the magnet; and x−z and y−z being the horizontal
and vertical symmetry planes. We consider the possibility
of a rotated pole face, and take a system of coordinates
[q, y, p] for the fringe-field region, as in Figure 1. The situ-
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ation is now as follows: we know the magnetic field com-
ponents in terms of coordinates [q, y, p], but we wish to find
the equations of motion in terms of [x, y, z] as an expansion
about the reference trajectory in the drift.

Figure 1: Orientation of coords [x, y, z] versus [q, y, p]

Part of the difficulty of this problem derives from adopt-
ing the, in some sense, “wrong” coordinate system. It
would be natural to develop the fringe-field motion in
[q, y, p], but we insist on [x, y, z]. Typically we do this to
avoid rotations of the momenta (between coordinate sys-
tems) and because the fringe is typically much shorter (and
weaker) than the body field, so that the motion is domi-
nated by the body field and its coordinate system. How-
ever, some authors[9, 10] do introduce the rotations, albeit
for thin-element fringe fields.

Transformation of field and coordinates The two co-
ordinate systems are related by [q, y, p] = T[x, y, z] and
[z, y, z] = T−1[q, y, p], where T−1 denotes the inverse of
the matrix

T =

⎡
⎣

cosφ 0 − sinφ
0 1 0

sin φ 0 cosφ

⎤
⎦ .

Fringe field with rotated pole face

Contrary to the case of the dipole, the quadrupole mag-
netic field is not rotation symmetric about the y-axis; and
when the pole face is not cut perpendicular to the magnet
principal axis, z, it is not immediately clear how the ex-
terior fringe field relates to the interior body field. How-
ever, some “asymptotic” properties are evident. Suffi-
ciently deep within the interior, the body field is essentially
two-dimensional; and sufficiently far from the pole face,
the fringe field is dominated by the field source (i.e. the
four pole pieces) and the “longitudinal” component B p is
directed perpendicular and away from the rotated pole face.

Transition region The issue then, is how large and
how significant is the transition region between these two
“asymptotic” zones where the field shapes are relatively
simple. To answer that question, we have performed
some 3D-modeling (Using Vector Fields Opera-3D) of a
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quadrupole magnet with entry/exit faces rotated about the
y-axis. In our model, Fig.2, we took a magnet 10 units
in length along its centreline, and having the radius to the
hyperbolic pole tips of 3 units. The pole faces were then
cut at 10◦ to the perpendicular. Figs. 3,4 show magnetic
field components and contours in the transition and fringe
regions. For this model, the 2-D interior body field is es-
tablished within 1/2 unit of the pole face; and the exterior
fringe field approaches the simple 3-D “asymptotic” form
within 1 unit distance of the poleface. The finge field falls
almost to zero within 5 units distance of the poleface. (This
is typical of a quadrupole: the longitudinal extent of the
fringe is roughly twice the radius to poletip.) The conclu-
sion is that eliminating the details of the transition region
from our analytical model will little compromise our re-
sults because the “asymptotic” forms are established within
a short distance either side of the pole face.

Figure 2: X (left) and Y (right) elevations of quadrupole.

Figure 3: Bx (left) and Bz (right) field components.

Figure 4: By field components and contours.

Fringe field - linear in transverse coords

Let B1 (tesla/metre) be the quadrupole gradient. Let
Bxyz = [Bx, By, Bz] and Bqyp = [Bq, By, Bp]. In the
interior region, the potential and body field are:

Φ = −B1xy and Bxyz = −∇Φ = [B1y, B1x, 0] .

Let W (bp) model the fringe-field fall off, as above. In the
exterior region, the potential and fringe field are:

Φf = −B1fqy W and

Bqyp = −∇Φf = B1f [yW, qW, qybW ′] .

Notice how the longitudinal component Bp has the same
form in the q − y plane as the 2-D potential from which
it is derived; the angular symmetry is quadrupolar (from
the pole face geometry), but the radial (r =

√
q2 + y2)

dependence is quadratic.
For the entrance fringe field, the field is increasing and

so W ′ > 0 which implies the Bp component is reversed
compared with the exit fringe for which W ′ < 0.

Transformation of field and coordinates The next
step is to investigate continuity of field and potential in
the boundary plane p = 0. To do that, one must trans-
form the fringe field components in [q, y, p] into compo-
nents directed along [x, y, z]. The components are Bxyz =
T−1Bqyp or, explicitly,

Bxyz

B1
=

⎡
⎣

y cosφW (bp) + bqy sin φW ′(bp)
qW (bp)

−y sin φW (bp) + bqy cosφW ′(bp)

⎤
⎦ .

At the point [q, y, 0], we find coords [x, y, z] =
[q cosφ, y,−q sinφ]. Hence Φ = −B1qy cosφ while
Φf = −B1fqy. The interior field has components
[Bx, By, Bz] = B1[y, q cosφ, 0] while the exterior field
has components [Bx, By, Bz] = B1f [y cosφ, q,−y sin φ].
Clearly these functions are not continuous across the
boundary unless φ = 0; and this was to be expected be-
cause we have eliminated the transition region and the field
rotations that occur there. We adopt a compromise, set
B1f = B1 and incur a scale error of order cosφ. The
next step is to re-write [q, y, p] in terms of [x, y, z] using
[q, y, p] = T[x, y, z], leading to p = (z cosφ + x sin φ)
and q = (x cosφ − z sin φ).

Expansion about reference trajectory The next step
is to make an expansion of this field about the reference
trajectory [x, y, z] = [0, 0, z]. We pursue the course not
to expand W (bZ), etc, in powers of Z . But what to do
with the mixed powers of x and z arising from qn? We
shall accept all terms xiyj (irrespective of zk) that satisfy
i + j = n for a calculation of order n. To first order, with
n=1, the result is

Bxyz

B1
=

[
y cos φ

(x cos φ − Z tan φ)
−y sin φ

]
W−

[
y sin φ tan φ
x sin φ tanφ

y sin φ

]
bZW ′.

The next step is to find the forces F = eU ∧ Bf . U is
the velocity vector. Let Fxyz = [Fx, Fy, Fz]. We neglect
terms in ẋ and ẏ as small compared with vs, and obtain the
components

Fxyz

B1evs
=

[ −x[cos φ W − bZ sin φ tanφ W ′] + Z tan φW
+y[cos φW − bZ sin φ tan φW ′]

0

]
.
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Clearly we have focusing/defocusing terms in x and y (re-
spectively). Under the assumption W ≥ 0, the body field
is horizontally focusing. In addition there is a dipole term
in Fx; this should come as no surprise, because our ge-
ometry implies the particle travels off-axis in the exterior
quadrupolar fringe field. Fx bends according to which side
the z axis lies compared with p. In the case φ > 0, the bend
is oppositely directed to the horizontal focusing.

Deflections We find thin-lens type approximate ex-
pressions for the deflexions produced by these fields under
the condition that the fringe is sufficiently narrow that there
is no change in the coordinate values within the fringe. Let
us introduce the parameter

ρ ≡ (γm0vs)/[e(B1L)] , (1)

which is the analogue of the dipole bending radius only
with B1 × L replacing B0. The change in divergences are:

Δy′ = +(y/ρ)W̄ sec2 φ (2)

Δx′ = −(x/ρ)W̄ sec2 φ + (L̄/ρ) secφ tan φ . (3)

Here W̄ is the average value of W ; and L̄ =∫ L

0 ZW (bZ)dZ . For example, if W (s) = cos2(s) then
W̄ = 1/2 and L̄ ≈ L/6.

Nonlinear fringe field

To find the second order terms in the fields and forces,
we have first to find the higher order correction to the po-
tential function in the region exterior to the quadrupole.
We appeal to the Fourier-Bessel expansion for guidance
on the correct form. The relevant term for a quadrupole
is I2(kr)eikzej2θ and the radial dependence is I2(kr) ≈
(kr/2)2/2 + (kr)4/6 + . . .. Hence the trial potential func-
tion for the fringe

Φf = −G(p)qy + H(p)qy(q2 + y2) .

Substitution into Laplace’s equation gives the approximate
condition H(p) = G′′/12 and the error in the Laplacian
is reduced by the factor ε ≈ (q2 + y2)b2/12. We do not
have to re-match the potential on the boundary plane p =
0, because the higher order terms are small provided that
ε 	 1. Starting from the fringe field potential

Φf = B1qy[−W (bp) + (q2 + y2)(b2/12)W ′′(bp)] ,

we repeat the previous steps of field transformation and co-
ordinate substitution, and expand about the reference tra-
jectory [x, y, z] = [0, 0, z]. The additional nonlinear field
is

ΔBxyz

B1
=

⎡
⎣

xy sin 2φ
x2 cosφ sin φ

xy cos 2φ

⎤
⎦ b W ′ +

1
4

⎡
⎣

c1

c2

c3

⎤
⎦ b2ZW ′′.

c1 = −y(x − 3x cos 2φ + Z sin φ) tan φ

c2 = x2 cosφ sin φ

+ tan φ[y2 − x sin φ(Z + 2 sinφ) + (Z2/3) tan2 φ]
c3 = y(Z sinφ − 6x cos2 φ) tan2 φ .

Forces and deflections The next step is to find the ad-
ditional forces: ΔFx = −evsΔBy , ΔFy = +evsΔBx

and ΔFz = 0. By integration of these forces, we find the
additional deflections:

Δy′ = −[xy/(Lρ)][(1/2) + sec2 φ] sin φ (4)

Δx′ = +[x2/(2Lρ)][(1/2) + sec2 φ] sin φ (5)

− [y2/(4Lρ)] secφ tan φ

+ [x/(2ρ)]W̄ tan2 φ − [L̄/(2ρ)] secφ tan3 φ .

These higher order terms are of order (x/L) smaller than
the quadrupole fringe focusing/defocusing terms; and be-
come important when the amplitude of the horizontal os-
cillation is comparable with the length of the fringe field.

If we consider that there are large angles, then there are
further terms appearing in the forces because we can no
longer omit ẋ, ẏ.

ΔFxyz

eB1vs
=

⎡
⎣

−yy′ sin φ
+yx′ sin φ

(xx′ − yy′) cosφ − x′Z tanφ

⎤
⎦W (bZ)

+

⎡
⎣

+y′

−x′

0

⎤
⎦ y

b2Z2

4
W ′′(bZ) sin φ tan2 φ .

The resulting additional deflections, compared with equa-
tions (2, 3) are:

Δx′ = −y′(y/ρ)W̄ tan φ[1 − (tan2 φ)/2] (6)

Δy′ = +x′(y/ρ)W̄ tan φ[1 − (tan2 φ)/2] (7)

Δz′ = (xx′ − yy′)W̄/ρ − (L̄/ρ)x′ sec φ tan φ . (8)
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