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Abstract 
Tuner parameters: number (or separation distance), 

diameter and position range, are determined in order to fit 
two main requirements: (1) compensation of construction 
errors specified between given bounds, and (2) 
compatibility with magnetic-field bead-pull 
measurements. Tuner slopes possibly derived from 2D or 
3D simulations are compared. RFQ 4-wire transmission 
line model is used to calculate tuner position range 
required to compensate for given capacitance relative 
errors. The position of the bead guiding-wire is deduced 
from 3D field maps and magnetic-field-to-voltage 
calibration accuracy requirement. 

INTRODUCTION 
The SPIRAL2 RFQ is designed to accelerate at 88MHz 

two kinds of charge-over-mass ratio (Q/A) particles. The 
proposed injector can accelerate a 5 mA deuteron beam 
(Q/A=1/2) or a 1 mA ion beam with Q/A=1/3 up to 0.75 
MeV/A. It is a CW machine which has to show stable 
operation, provide the requested availability, have the 
minimum losses in order to minimize the activation and 
show the best performance/cost ratio.  

 
 

Figure 1: Location of tuner slugs and loop port in one 1-
meter long RFQ module (final design). 

It will be a 4 vane RFQ type, mechanically assembled 
(Fig. 1), the global goal being to build an RFQ without 
any brazing step. 

SLUG TUNERS 3D MODELING 
The SPIRAL2 RFQ design was initially based on a 

distribution of three tuner planes per meter, with 130 mm-
diameter tuners in planes #1-4, #6-10 and #12-15, and 
90 mm-diameter tuners in planes #5 (on each side of 
vacuum port) and #11 (on each side of feeder loop), thus 
amounting to a total number of 68 tuners (52 × 130 mm 

and 16 × 90 mm). Tuner inductance slopes were derived 
from 2D SuperFish simulations. 

Recently, 3D simulations of slug tuners have been done 
with SOPRANO, and also with COMSOL. The results are 
summarized in Table 1. For these simulations, a short 
section of RFQ is meshed (Fig. 2) with electrical-parallel, 
magnetic-normal end boundary conditions, which act as 
mirror boundary conditions. Thus the simulations 
represent infinite periodic RFQ's. One half 130 mm 
diameter slug is located at each extremity of the model 
(Fig. 3). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: One-quarter of RFQ cross section with 2 half 
slugs meshed with I-DEAS and solved with SOPRANO 
(a) Magnetic field, (b) Electric field 

 Table 1: Short RFQ segment 3D simulation with tuners. 

 

SOFTWARE LENGTH 
(mm) 

TUNER POS. 
    #1               #2 

F 
(MHZ) 

F-F2D 
(MHZ) 

hqq0 
(mm) 

SOPRANO [none] [none] 87.380 0 [none] 
″ 325.36 0 0 87.106 -0.274 0 
″ ″ +6.22 +6.22 87.285 -0.095 6.22 
″ ″ +50 +0 88.121 +0.741 25 
″ ″ +50 +30 88.658 +1.278 40 
″ ″ +50 +50 89.119 +1.739 50 

COMSOL  500  0 [none]  0 [none] 
″ ″ +50 [none]  +0.670 25 

(a)

(b)
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Figure 3: SOPRANO models corresponding to different 
tuner positions [#1,#2]: (a) [−30,+50], (b) [+0,+0], 
(c) [+50,+0], (d) [+130,+0]. 

The tuner position function hQQ(z) = hQQ0(z) + hQQ1(z) 
is broken down into its even hQQ0 and odd hQQ1 parts, 
where the former induces frequency and even voltage 
perturbations, and the latter odd voltage perturbation only. 
Different slug tuner positions have been examined, from 
−30 mm to +130 mm; the resulting linear frequency shift 
vs. hQQ0 (Fig. 4) shows that Slater's small perturbation 
theory may be applied safely in this case. Note that the 
“flush” position (hQQ0 = 0) has been defined on the slug 
center line, leading to a −6.22 mm maximum recession at 
slug periphery, and a −274 kHz difference with respect to 
the resonance frequency of the 2D geometry. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: 3D frequency shift (kHz) vs. tuner position even 
part hQQ0 (mm). 0 kHz reference: 2D simulation.  

Slater's formula may also be used to derive the estimate 
of the 2D slope: ∂f/dh = (4/π)(zt/φt)(Δf/Δh), where zt is 
tuner axes spacing, φt is tuner diameter, and the 4/π factor 
accounts for the circular shape. The 3D simulations give 
∂f/dh = +127.5 kHz/mm, while 2D SuperFish simulations 
led to 81 kHz/mm only for some unclear reason.  

MINIMUM TUNER SPACING 
Tuner spacing is directly related to the voltage tuning 

process: bead-pull measurements sense longitudinal 
magnetic field Hz(x0,y0,z) vs. abscissa z at some 
transverse location {x0,y0} in RFQ quadrants, and a 
conversion factor κ(z) = V(z)/Hz(x0,y0,z) is applied to 

recover the value of inter-vane voltage V(z). This 
procedure remains valid provided that some regions do 
exist where Hz is not perturbed by the tuners themselves. 
The relative variation [κ(z)−κ0]/κ0, where κ0 is the value 
of the conversion factor for the pure 2D geometry, is 
plotted at Fig. 5 for various bead position radii. The local 
perturbation due to the tuner is clearly visible up to about 
230 mm from tuner axis; hence tuner separation should be 
at least 460 mm, leading to a new design with 40 identical 
130 mm-diameter tuners (2 per quadrant and per meter). 
Note that the residual value of [κ(z)−κ0]/κ0 at large z 
determines a lower bound on tuning accuracy (~1%). 

 
 
 
 
 
 
 
 
 

 
 
 
Figure 5: [κ(z)−κ0]/κ0 vs. z for various bead position radii 
(color). Position of tuner located at z = 0 is +50 mm. 

TUNER POSITION RANGE 

Method 
The loaded lossless 4-wire transmission line model [1] 

is used to consistently relate inter-vane voltages to 
originating perturbations, such mechanical tolerances and 
tuners. Tolerance bounds are then easily transformed into 
tuner position range requirements. Inter-vane voltages 
|u1,u2,u3,u4|, expressed in {Q,S,T} basis: u1 = +UQ+US, 
u2 = −UQ+UT, u3 = +UQ−US, u4 = −UQ−UT, are solution of 
the differential problem  

{ −∂2U/∂z2 + AU = λU }  + boundary conditions,      (1) 
where A contains line inductance and capacitance data 
(derived from 2D simulations) vs. abscissa z, and 
λ = (ω/c)2. Mechanical tolerances are modelled by the 
perturbations of inter-vane capacitances    
           ΔC1 = ΔCQQ + ΔCSQ,   ΔC2 = ΔCQQ − ΔCTQ,  
           ΔC3 = ΔCQQ − ΔCSQ,   ΔC4 = ΔCQQ + ΔCTQ. 
The resulting perturbation of the accelerating mode Qn is 

β
β

βα
α

αδ
≠δ

δ ∑∑∑ ++=Δ TTSSQ
n

QQn VqVqVqV , 

where VQδ, VSα, VTβ are the eigen-functions of Eq. 1. First 
order analysis yields the expansions 

)z(Cp)z(C XQi
i

XQiXQ ∑ Δ=Δ ,   X ∈ {Q,S,T}, 

in the {CXQi} dual bases, and the linear relations 
ΔλQn = ΔpQQn,   (λQn−λXi)qXi = ΔpXQi,  X∈ {Q,S,T},  (2) 

where the λXi are the eigen-values of Eq. 1. In the same 
way, positions of the 4 tuners in plane #t are expressed as  
h1t=hQQt+hSQt, h2t=hQQt−hTQt, h3t=hQQt−hSQt, h4t=hQQt+hTQt. 
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First order analysis yields the expansions 

XQti
i

XQiXQt ph ξΔ= ∑ ,   X ∈ {Q,S,T}, 

in the {ξXQti} dual bases, and the same linear relations 
given by Eq. 2. The tuner position limits in plane #t 
required to compensate for a maximum CXQ capacitance 
relative error ρ are given by the solutions of the problems 

find min and max of  −hXQt, given the constraints 
ρ+≤Δ≤ρ− ∑ )z(C/)z(Cp ssXQi

i
XQi ,  s = 1...S, 

where {zs} is an adequate abscissa sampling set. This 
linear programming problem (LP) is easily solved by 
Dantzig's simplex algorithm [2], repeatedly for all 
X ∈ {Q,S,T} and all tuner planes t. There is a total of 6T 
problems (T = number of tuner planes; ×2 for min and 
max; ×3 for Q,S,T components). Each LP problem has M 
decision variables (M = number of modes used in the 
expansions) and 2S single-sided constraints. 

Application 
Inter-vane capacitances are assumed to be roughly 

inversely proportional to their separating gaps. The 
minimum value of gap g = 7.2 mm in the SPIRAL2 RFQ 
and a tolerance Δg = 50 μm yield  

|ΔCi/C|  #  |Δgi/gi|  ≤  ρ  =  0.05/7.2  =  0.007, i = 1...4. 
Using simple geometrical considerations, it is possible to 
show that the points {ΔCQQ , ΔCSQ , ΔCTQ} define an 
octahedron (Fig. 6).    
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Inter-vane capacitance errors envelope. 

The above method has been applied to the various cuts 
labeled I, II and III in Fig. 6, and has been found to yield 
identical results in the three cases. Cut II main results are 
summarized in Table 2. The required tuning frequency is 
used to determine the value of ΔλQn in Eq. 2. The un-
tuned frequency, corresponding to the no-tuner geometry, 
would be in fact obtained with a 7.5 mm tuner position, as 
shown in Fig. 4. Thus 7.5 mm should be added to the 
tuner position values in Table 2. The realized constraints 
are quite close to the specified ones; this accuracy could 
be improved by increasing the set size S.  

Detailed results for the maximum tuner position QQ-
components in Cut II are displayed in Fig. 7. The 
maximum position of each tuner (consistently identified 
by color code) is shown in Fig. 7(d); the corresponding 

relative capacitance perturbation is shown in Fig 7(a). The 
relative voltage error resulting from this perturbation 
(prior to tuning) is shown in Fig. 7(b), and its spectral 
coefficients qQδ in Fig. 7(c). 

Table 2. Results for Cut II. 
resonance frequency, un-tuned 87.47 MHz 
resonance frequency, tuned 88.05 MHz 
number of modes in Q,S,T expansions 10 
size of abscissa sampling set {zs} 100 
|ΔCQQ/C| , |ΔCSQ/C| , |ΔCTQ/C| ≤ ρ/2 = 3.5 10−3 

minimum tuner position −0.26 mm 
maximum tuner position +44.52 mm 
max number of simplex iterations 10 
realized min constraint −3.501 10−3 
realized max constraint +3.508 10−3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Maximum of −hQQt found by the simplex 
algorithm for Cut II.  

CONCLUSION 
The tuner position limits given in Table 2 are linear 

functions of the tolerance ρ, and can be easily extended to 
other values of ρ. The recommended specification is 
−40 mm ~ +70 mm, obtained by considering (i) the 
7.5 mm trim already mentioned, (ii) the reduced 
efficiency of tuners when recessed from the cavity wall, 
and (iii) comfortable safety margins. 
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