
USING SMOOTH APPROXIMATION FOR BEAM DYNAMICS 
INVESTIGATION IN SUPERCONDUCTING LINAC 

E.S. Masunov, A.V. Samoshin, Moscow Engineering Physics Institute (State University), 
Moscow, Russia

Abstract 
The superconducting (SC) linac consists of some 

different classes of the identical cavities. The each cavity 
based on a superconducting structure with a high 
accelerating gradient. The distance between the cavities is 
equal to acceleration structure period L. By specific 
phasing of the RF cavities one can provide a stable 
particle motion in the whole accelerator. Three 
dimensional equation of motion for ion beam in the 
Hamiltonian form is derived in the smooth approximation 
for superconducting linac. The nonlinear ion beam 
dynamics is investigated in such accelerated structure. 

INTRODUCTION 
Ion superconducting linac is usually based on the SC 

interdigital cavities. This linac consists of the niobium 
cavities which can provide typically 1 MV of accelerating 
potential per cavity. Such structures can be used for ion 
acceleration with different mass-charge ratio in the low 
energy region [1] and for proton linac in the high-energy 
region (SNS, JHF, ESS project). The ions are accelerated 
and slipping relative to the RF wave in dependence of the 
ratio between the particle velocity β and the phase 
velocity of the wave βG. The period of RF structure in the 
i-th cavity is equal to Di = βGλ/2. The geometrical 
velocity βG of the RF wave is constant for cavities, belong 
to one class. RF field has π mode in all cavities. It is 
desirable to have a constant geometry of the accelerating 
cavity in order to simplify manufacturing. Such geometry 
leads to a non - synchronism but a stable longitudinal 
particle motion can be provided by proper phasing of the 
RF cavities. The geometric size of a cavity and a wave 
velocity βG must be changed step by step from one class 
to other class. The optimum number of cavity in each 
class determines the number of classes in SC linac. The 
identical cavities operate at the some initial drive phase φ. 
By controlling the driven phase of the accelerating 
structure and the distance between the cavities, the beam 
can be both longitudinally stable and accelerated in the 
whole system. 

Superconducting cavities provide high accelerating 
gradient in linear accelerating. Together with the higher 
accelerating rate in SC linac the defocusing factor is much 
higher in comparison to the normal conducting linear 
accelerator. The beam focusing can be provided by SC 
solenoids which follow each the cavity [1]. The 
conditions of longitudinal and transverse beam stabilities 
for the structure consisting from the periodic sequence of 
the cavities and solenoids were studied early using 
transfer matrix calculation [2]. In SC linac design, it is 
very important to know the bucket size since it relates to 

the longitudinal RF focusing. But the linac longitudinal 
acceptance cannot be obtained by matrix method because 
of the assumption that the particles have small 
longitudinal oscillation amplitude. In order to investigate 
the nonlinear ion beam dynamics in such accelerated 
structure and to calculate the longitudinal and transverse 
acceptances it can be used smooth approximation [3,4]. In 
this paper, three dimensional equation of motion for ion 
beam in the Hamiltonian form is derived in the smooth 
approximation for superconducting linac. 

PARTICLE MOTION IN SC LINAC 
A schematic plot of one period of the accelerator 

structure is shown in Fig. 1. It consists of a 
superconducting solenoid for transverse focusing and 
superconducting RF cavity for acceleration and 
longitudinal focusing. The distance between the cavities 
is equal to acceleration structure period L. The general 
axisymmetric equations of motion for ion moving inside 
an accelerator can be written as 

 
 

 (1) 

 
 

Here E is the acceleration RF field in every cavity and Aφ 
is the azimuthal vector-potential of the magnetic field in 
every solenoid (B = rotA). 

 
 
 
 
 
 
 
 

Figure 1: Layout of structure period. 

The acceleration RF field of periodic H-cavity is 
represented as an expansion in spatial harmonics 
 

 (2) 

where E0 is amplitude of RF field at the axis (E0 ≠ 0 if     
–Lr/2 < z–zi < Lr/2), hn = π/D + 2πn/D, n = 0, 1, 2, …, D is 
the period length of the cavity, Lr is the cavity length, zi is 
the coordinate of the i-th cavity center. I0, I1 are modified 
Bessel function. In our case the reference particle velocity 
βc and the geometrical velocity βG are closely in each 
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class of the identical cavities. Retaining in (2) only zeroth 
harmonic we can use the traveling wave system. In this 
system ωt can be replaced by h0(z–zi) + φ0i, where φ0i is 
the RF phase when the reference particle traverses the 
cavity center. 

We consider a dynamics under the assumption that the 
change of difference βc – βG in one cavity is small 
enough. The distance between the cavities is equal to 
acceleration structure period L. If φ0i = φc for every 
cavity, RF field can be expanded into a Fourier series as 
 

 (3) 
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−+± ±= nnn SST , Sn
± = sin(Yn

±)/Yn
±, Yn

± = (kc ± kn)Lr/2. 
In this expressions: E = 2U/Lr, U is the cavity voltage 
amplitude; kn = 2πn/L, n = 0, 1, 2, …; kc is slipping factor, 
kc = (2π/λ)(1/βc –1/βG). In the coefficients fn

c,s the phase 
relative to the reference particle ψ defined by        
ψ = ω(t – tc), tc is the flight time of the reference particle.  
In the simple case the vector-potential of the magnetic 
field Aφ = Br/2 can be approximated by the step function 
at every solenoid. If Ls is effective solenoid length and L 
is a lattice period, the external solenoid magnetic field can 
be represented as an expansion into spatial harmonics too. 

ANALYSIS OF THE EFFECTIVE 
POTENTIAL FUNCTION 

Let us consider particle acceleration in the 
polyharmonic fields of the cavities (3) and solenoids. In 
general, individual particle motion is complicated but can 
be represented as the sum of a slow smooth motion (ψ and 
ρ = h0r) and a fast oscillation ( ψ~ and ρ~ ). The force 
driving the ion motion can be separated into two parts 
corresponding to the fast and slow motion. Following 
Ref. [4] one can apply averaging over the fast oscillations 
and obtain the phase and radial motion equations in 
smooth approximation. 
 
 

 (4) 
 
 
 
where 210 UUUUeff ++=  is effective potential function. 
We use the following designations: 
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Where α = LUc/4LV, Uc = qU/mc2, LV = λβc
3γc

3/2π, 
b = (qBL/2mcβcγc)2, Xn = πnLs/L. 
Equations (4) have the damping terms from the first 
derivatives of phase ψ and ρ. The effective potential Ueff 
provides the full description of the ion dynamics in the 
smooth one-particle approximation. In Ref. [5] the 
longitudinal smooth approximation with acceleration in 
SC linac was investigated by the numerical simulation. In 
our case the analysis of the effective potential (5) makes it 
possible to study the condition at which the radial and 
phase stability of the beam is achieved, as well as to 
formulate applicability of a 3D smooth approximation to 
given electrodynamic problem. We begin our analysis 
with expanding Ueff in the vicinity of its minimum (ψ = 0, 
ρ = 0): 
 

(5) 

 
The expansion coefficients here depend on the parameter 
of interaction α, the values of Lr/L, Ls/L and the slipping 
factor kc. The radial and phase stability of the beam will 
be provided when Ωz

2 > 0, Ωr
2 > 0, where Ωz, Ωr are 

frequencies of small longitudinal and transverse 
oscillations. 

In the simplest case when the phase velocity βG changes 
from cavity to cavity and kc = 0 
 

 

(6) 

 
Here the value of χ depends on the ratio of Lr/L. For some 
of Lr/L the value of χ is listed in Table 1. 
Table 1. The factor of the period fillup, χ. 
χ 1/3 3/16 1/12 0 
Lr/L 0 1/4 ½ 1 

 
In single wave approximation when Lr = L and a fast 
oscillation terms are absent, the value of χ = 0. In this 
case the expression (5) coincides with the longitudinal 
and transverse phase advances per period (µz = Ωz, 
µr = Ωr) which were founded by transfer matrix 
calculation in [2]. But the conditions of focusing are 
changed if the parameter α is large and the fast 
oscillations are considered. The functions Ωz(α) and Ωr(α) 
for different values of φc are shown in Fig 2. The phase 
advances should be less than about π/2 for stable beam 
motion [6]. In this case, the smooth approximation is 
expected to be almost accurate. 
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As it can see from Fig. 2, the longitudinal oscillation will 
be stability for –π/4 < φc < 0 if the interaction parameter α 
is limited, α < αmax = sin(–φc)/χcos(2φc). In this case the 
frequency of longitudinal oscillation has maximum value 
in α = αmax/2. If the magnetic field is absent the radial 
stability of the beam is achieved, if the interaction 
parameter α > αmin = 2sin(–φc)/χ(1+ cos2φc). 

 

Figure 2: The frequencies of longitudinal (solid lines) and 
transverse (dot lines) oscillations for B = 4 T                    
(1 – φc =–10°, 2 – φc =–20° and 3 – φc =–35°). 

 
 
 
 
 
 
 
 
 

 
 
 

 

Figure 3: Stability area for different values of the 
magnetic field: 1 – B = 0, 2 – B = 1 T, 3 – B = 2 T           
and 4 – B = 2,5 T. 

The borders of stability area between Ωz = 0 and Ωr = 0 
are shown in Fig. 3 for deferent values of magnetic field, 
B, when Lr/L = 1/4. The value α on stability diagram 
moves down quickly on the α = 0 axis as beam energy 
increases (α ~ 1/β3). For B = 0, the area of stability tapers 
abruptly and the radial stability is absent when the beam 
velocity increases. The area of stability can be extended 
by a solenoid focusing which will also provide a separate 
control of transverse and longitudinal beam dynamics. 
For a proton beam velocity β ≥ 0.1, it is sufficient to 
increase the solenoid field (see Fig. 2). For example, the 
reference particle phase φc > –40° if B = 2T. 

It interesting to investigate the nonlinear ion beam 
dynamics in such accelerated structure. By means of the 
effective potential Ueff we can calculate the longitudinal 

acceptance. In Fig. 4 it is shown the separatrixes for 
φc = –35° and ρ = 0 when parameter α increases. The 

energy spread of the separatrix, 
dξ
dψγ

L
LV=Δ , at first 

increases and then it decreases, but the phase length of 
separatrix decreases always. If the value of the cavity 
voltage amplitude U is preset the separatrix area depends 
on the value of Lr/L ratio. In the case when α = 1 the 
phase acceptance and the energy spread will decrease 
nearly in two times when the cavity length, Lr, changes 
from L to zero. Thus, the smooth approximation gives a 
weaker effective RF bucket, i.e. smaller phase acceptance 
and potential well depth, compared with the single wave 
approximation when the fast oscillations are not 
considered. 

 
Figure 4: Separatrixes for φc = –35° and ρ = 0 for 
different parameter α: 1 – α = 0.1, 2 – α = 3                
and 3 – α = 6 . 

CONCLUSION 
Three dimensional equation of motion for ion beam in 

the Hamiltonian form is derived in the smooth 
approximation for superconducting linac. The borders of 
stability diagram are found for deferent values of the 
cavity voltage amplitude, U, the magnetic field, B, and the 
drift length, 2Ld + Ls. It was shown the high accelerating 
gradient will be limited by the advent of the phase 
instability in SC linac if –π/4 < φc < 0. Increasing of the 
drift length between cavities can decrease the separatrix 
area in several times. 
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