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Abstract 
The EBIS Project at Brookhaven National Laboratory is 

in the second year of a four-year project. It will replace 
the Tandem Van de Graaff accelerators with an Electron 
Beam Ion Source, an RFQ, and one IH Linac cavity, as 
the heavy ion preinjector for the Relativistic Heavy Ion 
Collider (RHIC), and for the NASA Space Radiation 
Laboratory (NSRL).  The preinjector will provide all ions 
species, He to U, (Q/m >0.16) at 2 MeV/amu at a 
repetition rate of 5 Hz, pulse length of 10-40 μs, and 
intensities of ~2.0 mA. End-to-end simulations (from 
EBIS to the Booster injection) as well as error sensitivity 
studies will be  presented and physics issues will be 
discussed. 

INTRODUCTION 
The present pre-injector for heavy ions for the 

Alternating Gradient Synchrotron (AGS) and Relativistic 
Heavy ion Collider (RHIC) uses a pair of 33 year old 
Tandem Van de Graaffs.  Many of the Tandem 
subsystems are becoming obsolete and would have to be 
replaced to maintain reliable long term operation of 
RHIC. Other issues with tandems are the  stripping foil at 
the terminal and at high energy lead to intensity and 
energy variations. Also in tandems ion must start as 
negative, which results in the limitations on ion species. 
The 880 meter long doublet transport line to booster 
makes operation more difficult 

The proposed Electron Beam Ion Source (EBIS) based 
pre-injector is based on modern technologies involving 
radio frequency quadrupole (RFQ), Inter-digital H mode 
drift tube (IH-DTL) linac and only 30 meters long 
transport line to booster [1]. The new pre-injector makes 
operation simple and expands the number of ion species 
available for RHIC or NASA Space Radiation Laboratory 
(NSRL) program. This pre-injector will inject only 1-4 
turns into the booster, as compare to 30-40 from Tandem. 
The requirement of booster injection for new pre-injector 
are given in table 1. 
Table 1: Requirement at booster injection for EBIS based 
pre-injector 

Species He to U 
Intensity  ≥ 1 x 1011 Charges/pulse 
Charge-to-mass ratio, 
Q/m 

≥ 1/6 

Repetition Rate 5 Hz 
Pulse width 10 -40 μs 
Switching time  1 s 
Output energy 2 MeV/u 
Emittance(Nor, full) ≤ 1.4 π mm mrad 
Momentum spread,ΔP/P ≤ ±0.05% 

In comparison to tandem beam, expected transverse and 
longitudinal emittance will be much higher from the EBIS 
pre-injector. This feature of EBIS beam demands a very 
careful choice of design parameters for the pre-injector to 
control the emittance growth in the both transverse and 
longitudinal planes. 

DESIGN OF THE PRE-INJECTOR 
The proposed EBIS based pre-injector will consist of  

EBIS itself, low energy beam transport (LEBT), RFQ, 
medium energy beam transport (MEBT), IH-DTL and 
high energy beam transport (HEBT). Layout of the pre-
injector is shown in Figure 1. 

In EBIS multi-charged ions are produced in a potential 
trap inside dense electron beam. Ion injection, 
confinement, and extraction are fully controllable. The 
extracted ion beam is formed with ion optics and 
accelerated to 17 keV/u in an accelerating tube separating 
high voltage platform of EBIS and LEBT. EBIS also 
produces other charge states along with desired charge 
state, for example if Au+32 is the desired charge state, 
EBIS will also produce charge states of 30, 31, 33, 34 in 
approximately equal amount. To get Au+32 ions of 1.7 
emA, EBIS has to produce about 10 emA of current in all 
charge states. Beam of 10 emA at 17 keV/amu is space 
charge dominated. To control the beam in transverse 
extant, one has to provide transverse focusing more often. 
We have chosen not to separate charge states until in the 
HEBT. The LEBT is designed for 10 emA [2]. 

 

 
Figure 1: Layout of the EBIS based pre-injector. 
 

At the entrance into LEBT the ion beam can be either 
focused or defocused (depending on charge to mass ratio 
and therefore on the accelerating voltage) with a grid lens. 
The final focusing will be done with a solenoid lens at the 
entrance into RFQ accelerator. Tuning the Twiss 
parameters of the ion beam at the entrance into RFQ will 
be done by adjusting parameters of grid and solenoid 
lenses. Horizontal and vertical steering of the extracted 
beam will be done with 2-dimensional 16-pole deflector 
at the exit from EBIS and sets of parallel plate deflectors 
in LEBT 

The RFQ is being built by the University of Frankfurt 
group and will be delivered next spring. The detail design 
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of the RFQ is describe in reference 3.  
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The last cell of the RFQ is modified to provide a 
transverse symmetric beam into the MEBT line. The 
transmission efficiencies shown in reference 3 are for the 
desired charge state. In case of gold ion transmission 
efficiencies of neighboring ions are lower. Simulations 
show that about 5 emA total beam in all neighboring 
charge states (+30,+31,+32,+33,+34) will be transmitted 
by the RFQ.  In an RFQ, the longitudinal output emittance 
decreases as the input current increase. Choice of not to 
discriminate charges before RFQ provide an extra 
advantage of getting lower longitudinal emittance out of 
the RFQ. 

We are considering two following options; (A) MEBT 
with three quadrupoles and buncher in the beginning of 
the MEBT with total length 64.4 cm. and no change in the 
phase of last cells in the IH-DTL. (B) MEBT with four 
quadrupoles and a buncher with total length 81.0 cm. The 
buncher is located in the middle of the MEBT and the last 
two cells in the IH-DTL linac will have -90 phase to 
reduce the momentum spread at the booster entrance. By 
changing the phase of last two cells the momentum spread 
at the booster will be reduce at the cost of the little lower 
(~ 40 keV/u)  output energy.  

Both MEBT configurations should provide enough 
space for the diagnostics and gate valves for the vacuum 
separation between RFQ and IH DTL. Here we present 
only option B, but performance of option A is similar to 
option B. 

The IH-DTL is also being built by University of 
Frankfurt group. The IH-DTL is designed with KONUS 
beam dynamics to accelerate beam to final energies of 2 
MeV/u for currents up to 10 emA.  The detail design of 
the IH-DTL is described in reference 3. The IH-DTL linac 
will transmit only the nearest charge states. In case of 
gold ions only +31,+32.and +33 will transmitted if the 
desired charge state is +32. Simulations show that about 
3.2 emA  will be transmitted through IH-DTL. 

A 30 meters long HEBT consists of seven 20 cm long  
quadrupoles, two 73 degree dipoles, two bunchers, beam 
scrapers at the  middle of the two dipoles and diagnostics. 
The line will join the existing tandem to booster transfer 
line.  The layout of the HEBT is shown in figure 2. Beam 
will be injected into the booster via existing 17 mm wide 
and 2.5 meters long electrostatic inflector with admittance 
of 29 pi mm mrad. This is the lowest admittance in the 
preinjector line. Beam will be matched to the inflector, 
producing transverse mis-matched beam into the booster. 
This mismatch will increase the emittance in the booster 
and will help to reduce space charge tune spread in the 
booster.   

SIMULATIONS 
We start end-to-end simulations from the EBIS. Particle 

distributions are generated such that ions at a given radius  
satisfy the transverse velocity due to the space charge 
potential of electron and ions, and azimuthal velocity due 
to solenoid field of EBIS. TRAK code was used to track 

 

 
 

Figure 2: Layout of EBIS based pre-injector, showing 
injection into Booster.  

Figure 3: TRAK output for LEBT gold ions.                 

 
The output particle distribution from the TRAK code was 
used as the input distribution for the code PARMTEQM 
which accelerates particles in the RFQ.  PARMILA was 
used to simulate MEBT. PARMTEQM output particle 
distributions were used as input to the MEBT. Figure 4 
shows the phase space distributions.   
The particle distributions through IH-DTL were tracked 
using code LORASR. The output distribution from the 
LORASR was used to transport beam to booster entrance 
using code PARMILA. .Figure 5 shows the output 
distribution at the booster entrance. Figure 6 shows the 
fraction of the beam vs. Δp/p on the x-axis. 

ERROR SIMULATIONS 
All the errors were divided into two categories; (1) 

static error, which are independent of time, such as 
alignment errors, manufacturing defects, etc; (2) dynamic 
errors, which are time dependent, such as power supply 
control errors, phase and amplitude errors, etc. A total of 
20 sets of errors were generated, i.e. 20 pre-injectors, for 
design option B. The values for these errors are given in 
reference 4.  The alignment errors were corrected with the 
dipole correctors located in the MEBT and HEBT.  Only 
IH-DTL errors were not included because code LORASR 
is under development to include these errors. Table 3 
summarizes average and rms values for transmission, 
emittance, and mis-match factors. 
 

the particles to the entrance of the RFQ.   
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Figure 4: Phase space distribution at end of MEBT. 

 

 

 
Figure 5:  Phase space distribution at the booster. 

 
 

  
Figure 6: Fraction of the beam vs. Δp/p on the x-axis. 
 

Table 2: RMS emittance and transmission along the pre-
injector. Transmission is defined with respect to the EBIS 
Source. 

Location EMIT (nor, RMS)  
RFQ Ex (π mm mr) 0.086 
 Ey (π mm mr) 0.092 
 Ez (π ns-keV/u) 0.0658 
 Trans 0.987 
MEBT Ex (π mm mr) 0.096 
 Ey (π mm mr) 0.090 
 Ez  (π ns-keV/u) 1.425 
 Trans 0.982 
IH-DTL Ex (π mm mr) 0.097 
 Ey (π mm mr) 0.096 
 Ez  (π ns-keV/u) 0.579 
 Trans. 0.966 
HEBT Ex (π mm mr) 0.146 
 Ey (π mm mr) 0.122 
 Ez  (π ns-keV/u) 1.832 
 Trans (Δp/p=0.1%) .960 
 Trans (Δp/p=0.05%) .896 

 
Table 3: Summary of the error studies. Transmission is 
defined with respect to the EBIS source and particle 
which have Δp/p≤ 0.05%. 

 Trans Ex 
(RMS,NOR) 
(π mm mr) 

Ey 
(RMS,NOR) 
(π mm mr) 

MMF 
(x/y) 

Average 0.864 0.167 0.148 0.3/0.8 
STD 0.0122 0.008 0.011 0.04/0.18 
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