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Abstract

ALBA is a 3rd generation light source under construc-
tion close to Barcelona, Spain. The lattice chosen consist
in a DBA-like structure where most of the vertical focusing
takes place in the bending magnets, in order to maximize
the space allocated for insertion devices in the lattice and to
reduce the emittance. In this case the tunes of the Storage
Ring will be strongly affected by the focusing of the mag-
netic field of the bending magnet. In existing storage rings
with gradient bending magnets it has been realized that the
real vertical tune of the machine is slightly different from
the theoretical one. In order to avoid this for ALBA we in-
vestigated the right modelling of the bending magnet. The
corresponding procedures are described within this paper.
The parameters of the model are estimated from the field
map on the magnet midplane computed with 3D simula-
tions.

INTRODUCTION

The ALBA Storage Ring (SR) has 32 rectangular bend-
ing magnets, with magnetic length 1.38 m and gradient of
5.66 T/m (SR-MA-BEND), while in the Booster there are
8 bending magnets with magnetic length of 1 m (BO-MA-
BM05) and 32 magnets of 2 m (BO-MA-BM10), both are
rectangular type with quadrupolar gradient of 2.29 T/m and
sextupolar gradient of 22.2 T/m2. Table 1 lists the parame-
ters for the three types of the gradient magnets, more details
on the ALBA dipoles can be found in [1].

The use of combined function dipoles has the advantage
of the reduction of the space taken up by the magnets and of
the decrease of the natural emittance by introducing addi-
tional damping due to the field gradient. On the other hand,
this reduces the flexibility of the ALBA SR lattice [2], in

Table 1: Design parameters of the ALBA SR and Booster
combined function magnets.

Parameter SR-BEND BO-BM05 BO-BM10
Length (m) 1.3837 1.0000 2.0000
Field (T) 1.4200 0.8733 0.8733
Grad. (T/m) 5.6600 2.2916 2.2916
Sext. (T/m2) 0.0 22.215 22.215
Energy (GeV) 3.0 3.0 3.0
Angle (◦) 11.25 5.00 10.00

particular in the vertical plane, and enhances the sensitivity
to the gradient value of the bending magnets, as well as to
the edge focusing due to the pole face rotations. Experi-
ence in other light sources using combined function bend-
ing magnets, as the ASP, CLS or Spear-III, has shown that
the effective edge angles of the real magnets can differ sig-
nificatively from the design ones, changing considerabely
the vertical tune. Figure 1 shows as an example the change
in the vertical tune with the edge angle for the ALBA lat-
tice: between 2.5◦ and 4.5◦ there is not any stable solu-
tion. The flexibility of the ALBA lattice is however large
enough in order to compensate the focusing errors given by
the edge focusing.
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Figure 1: Change in the SR vertical tune as a function of the
pole face rotation in the bending magnet varying from zero
(sector magnet) up to a value twice the rectangular magnet
case. The red circle marks the nominal one.

FIELD AND GRADIENT PROFILE

The magnetic field for every magnet has been calcu-
lated with 3D simulations performed with OPERA. Fig-
ure 2 shows the relative longitudinal behaviour of the mag-
netic field By, as well the gradient. Within the homoge-
nous part of the combined bending magnet, the magnetic
field and the gradient show the same distribution, which is
not the case at the end of the magnet where the gradient
shows a sharp peak. This peak is given by the fringe field
and the rotation angle of the pole face with respect to the
beam trajectory.

TUPMN068 Proceedings of PAC07, Albuquerque, New Mexico, USA

02 Synchrotron Light Sources and FELs

1076

A05 Synchrotron Radiation Facilities

1-4244-0917-9/07/$25.00 c©2007 IEEE



0

0.4

0.8

1.2

1.6

0 200 400 600 800 1000

magnetic field
gradient
edge focusing

B
, 
G
, 
e
d
g
e
 f
o
cu
si
n
g
 (
re
la
tiv
e
 p
ro
fil
e
s)
 [
a
.u
.]

s [mm]

Figure 2: The magnetic field By profile of the magnet
SR-MA-BEND along the nominal trajectory (red full line)
compared with the gradient distribution (blue dashed line)
and the peak contribution from the pole face rotation (green
dotted line). The curves are in arbitrary units.

MODELLING APPROACH

Conventional beam optics codes, as MAD or TRACY,
represent a combined function dipole as an element whose
first order attributes are the radius of curvature (or the arc
length), the bend angle, the quadrupole coefficient, the ro-
tation angles for the entrance and exit pole faces, etc...
Therefore in defining the transformation through a dipole
the field and the gradient are assumed to be step functions
with constant values within the magnet and zero outside.
Such a field distribution is just an idealization, since in a
real magnet the field drops off smoothly to zero in the edge
region, and if we want to model the transformation char-
acteristics for a real dipole we have basically two options:
either a piecewise model or an effective hard edge model.

Piecewise model

In the piecewise approach no assumption is made on the
field behaviour: the whole dipole real distribution is sliced
in small segments of varying field and gradient, and the
total transformation matrix is the product of the matrices
for all pieces.

An automatic procedure to generate the elements has
been written for the Accelerator Toolbox of Matlab. The
function reads the data table with s, B(s) and G(s) pro-
duced by the 3D magnetic simulations. Then it creates the
arrays with L, B and G for a slicing of the dipolar field
where the maximum change in a slice is 0.1 of the field and
0.2 of the gradient at s = 0, and each slice has a maximum
length of 0.3 m. This settings slice the SR dipole in around

40 pieces allowing a very good simulation of the field be-
haviour. The advantage of this model is the accurracy in
the optics simulations, the drawback is the large CPU time
consumed in tracking simulations.

Hard edge model

In this second option the dipole is represented as a single
block of constant field and gradient embedded in two thin
lenses that reproduce all the focusing effects in the edge re-
gion (different effective length of the field and the gradient,
pole face rotation...).

For the proper linear modelling of a gradient dipole mag-
net two conditions require to be fulfilled. First, the de-
flection angle (i.e. the total field integral) and the length
must be same of the actual trajectory of a nominal particle.
Next, the focusing (in the body and in the edge region) rep-
resented in the model must be the same experienced by a
particle traveling around the nominal trajectory.

The first order attributes of the dipole model will be the
arc length L, the bend angle α, the quadrupole coefficient
k, the rotation angle ψ for the entrance and exit pole faces,
the fringing field integral and the magnet gap g.

The arc-line effective length of the magnet SR-MA-
BEND was estimated by taking the total field integral and
dividing it by the average field in the centre for -400 mm ≤
s ≤ 400 mm, (Fig. 2):

Leff =

∫ +∞
−∞ By(s) ds

Bave
y

. (1)

The gradient factor ∂By/∂x in the body was also esti-
mated as the average value for -400 mm ≤ s ≤ 400 mm.
Therefore the transport matrix of the magnet body for
the four transverse coordinates plus the energy deviations,
(x, x′, y, y′, δ), is completely defined.

For the focusing effect produced by the edge angle some
more considerations have to be made. The entrance and
exit edge focusing effect are modeled through a thin ele-
ment whose matrix is

F =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
1
ρ tanψ 1 0 0 0

0 0 1 0 0
0 0 − 1

ρ tanψ 1 0
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠
. (2)

The focusing angle in the vertical plane ψ differs from the
horizontal angle ψ by a small correction term given by the
first integral of the fringing field [3].

The modelling problem basically consists in the deter-
mination of the effective edge focusing strength ψ that pro-
duces the actual trasformation through the magnet.

Edge focusing angle from the effective length

An ideal rectangular magnet has an edge angleψ = α/2,
then for SR-MA-BEND it should hold ψ = α/2 =5.625◦.
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Nevertheless, in a real magnet, due to the finite width of
the magnetic pole (60 mm to be compared with a gap of
36 mm), the effective magnetic edge angle can differ very
much from the mechanical edge angle. In fact, calculat-
ing the effective length on different trajectories parallel to
the nominal one, and considering Leff as a function of the
transverse position x, one can infer the slope that gives an
estimate for the effective magnetic pole face rotation an-
gle. For SR-MA-BEND with the end chamfer of 13◦ it is
obtained ψmag =5.597◦.

Edge focusing angle from the gradient profile

An other way to assess the edge focusing is from the
gradient profile in Fig. 2. Taking into account the same
distribution of the field as well for the gradient, the con-
tribution of the edge focusing can be estimated subtracting
this distribution to the real one (green dotted line). Then,
the integral of the peak in Fig. 2 divided by Bρ must equal
the term F21 = 1/ρ tanψ in Eq 2. For SR-MA-BEND it
is then inferred ψpeak =5.400◦, which is a variation of 4%
with respect to ψmag =5.597◦: what is the most proper
value to use?

Edge focusing angle from the real transfer matrix

To solve this problem we have introduced a more precise
way to estimate the edge focusing from the real transport
matrix calculated from the the map of the field [4].

The physical problem of calculating the transformation
through the magnet is solved by numerically integrating the
motion of a particle through the magnetic field map with
different initial coordinates (x, x′, y, y′, δ) displaced with
respect to the reference trajectory by (1 mm, 0, 0, 0, 0),
(0, 1 mrad, 0, 0, 0) and so on, the final coordinates at the
end of the the path are the columns of the transport matrix.

Special attention has been paid in order to obtain dis-
placements little enough to remain in the linear regime.
Once the complete transport matrix of the magnet is
known, the face pole rotation angle ψ in the hard edge
model is used as adjustable variable to fit the modelled lin-
ear transport matrix, in the least square sense, to the ac-
tual matrix. The edge angle determined with this method is
ψmatr =5.395◦, very close to ψpeak .

MODELLING RESULTS
The optical functions both with the piecewise model

(AT) and for the hard edge (MAD) have been computed
for three different end chamfer designs, 10◦, 13◦ and 20◦

,
and the tunes are listed in Table 2. From the tune change
with the chamfer angle the best value of 14◦ is then found
for the SR bending magnets.

A completely similar treatment has been carried out also
for the Booster magnets, but in this case the lattice is not
so critical with the gradeint dipoles and the nominal optics
can be recovered even with the three quadrupole families
of the matching sections.

Table 2: SR: betatron tunes for the so called “unit cell lat-
tice” with three different end chamfers in the dipoles, with
the piecewise and the hard edge model. The nominal tunes
are Qx = 18.9143 and Qy = 9.7243.

Chamfer angle 10◦ 13◦ 20◦

Piecewise Qx 18.9465 18.9144 18.8237
Qy 9.1988 9.6419 10.4674

Hard edge Qx 18.9636 18.9272 18.8318
Qy 9.2360 9.6324 10.4977
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Figure 3: SR tune change as a function of the end chamfer.
According to this plot the best end chamfer should be 14 ◦.

CONCLUSIONS

The advantage of the sliced model is the accuracy of the
lattice simulations, but on the other hand in the hard edge
approach we have to deal with a reduced number of simple
variables in order to study a lattice, and tracking calcula-
tions for many turns in a ring are much less time consum-
ing. However it is clear that once a field contains nonlinear
components, the main advantage of taking the hard edge
matrix approach may be lost.

Finally the agreement between the two modelling ap-
proches is satisfactory and the changes obtained in the lat-
tice linear parameters varying the chamfer angles are con-
sistent. This has allowed to find the value of the end cham-
fer for the prototype production. The optics calculations
then will be checked whith the magnetic data taken on the
gradient dipole prototypes.
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