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Abstract

The need for realistic accelerator simulations is greater
than ever before due to the needs of design projects such
as the ILC and optimization for existing machines. So-
phisticated codes utilizing large-scale parallel computing
have been developed to study collective beam effects such
as space charge, electron cloud, beam-beam, etc. We will
describe recent advances in the solvers for these effects and
plans for enhancing them in the future. To date the codes
have typically applied to a single collective effect and in-
cluded just enough of the single-particle dynamics to sup-
port the collective effect at hand. We describe how we are
developing a framework for realistic multi-physics simula-
tions, i.e., simulations including the state-of-the-art calcu-
lations of all relevant physical processes.

INTRODUCTION

As the demands for precision in the design and opera-
tion of particle accelerators increases, so must the precision
of accelerator simulations increase. High-precision simu-
lations must eventually include collective effects such as
space-charge, electron-cloud, beam-beam, wakefields, etc.
Precision calculations of these effects require computa-
tionally expensive field calculations and application, which
in turn require efficient calculations on parallel machines.
The SciDAC Accelerator Science and Technology project
made significant progress on this task. Much work remains
to be done, however, and a new SciDAC-funded compu-
tational accelerator physics project, the COMPASS collab-
oration, is starting to work on the next level of these chal-
lenges. Throughout both projects, there have been two very
compatible themes: First, do not re-invent the wheel. Sec-
ond, take advantage of the state-of-the-art wherever possi-
ble.

PARALLEL COMPUTERS, LARGE AND
SMALL

The scope of computational resources available to ac-
celerator physicists is very broad. Our solver development
strives to take into account the fact that rough calculations
performed on desktop computers are frequently desirable,
while detailed calculations are usually performed on Linux
clusters and supercomputers. Even within this three cat-
egories, there are wide variations. Desktop computers are
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increasingly utilizing multiple-core processors. Linux clus-
ters exist with a variety of interconnect options and super-
computers vary widely in size and architecture.

Parallel computations require communications between
processors and therein lies the difficulty in writing effi-
cient parallel code. The community has largely settled on
the Message-Passing Interface (MPI) as the mechanism of
choice for performing parallel communication. MPI allows
many different communication patterns; the most efficient
pattern may very well depend on the detail of the network
beneath it.

Aspects of Networks

The most important aspects of networking for parallel
calculations are latency, bandwidth and topology. Latency
represents the shortest time in which a message can be
passed between two processors. Bandwidth is usually ex-
pressed as the maximum speed at which large amounts of
data can be moved between processors. For smaller mes-
sages, latency will dominate speed. The network topology
is important in that it determines how the communication
speed is affected by the pattern of communication. The
simplest and least expensive network fabric seen in Linux
clusters, is gigabit networking, which has a high bandwidth
but also high latency. More exotic networking options are
Myrinet and Infiniband, both of which supply bandwidth
of the same order of magnitude as gigabit networking, but
with much smaller latencies. The cost to add Myrinet and
Infiniband networking to a Linux cluster is usually of the
same order of magnitude as the CPUs themselves. Su-
percomputers typically have proprietary networking, of-
ten with exotic topologies. The most extreme example is
IBM’s BlueGene [1].

FRAMEWORKS AND COMPONENTS

Under the auspices of the SciDAC Accelerator Science
and Technology, two frameworks were developed to com-
bine state-of-the-art single-particle optics with state-of-the-
art collective effects. Synergia2 [6] utilizes the single-
particle optics from the CHEF libraries [5] and the par-
allel space-charge calculation from IMPACT [2], while
MaryLie/IMPACT (ML/I) utilizes the single-particle optics
from MaryLie [3] and space-charge from IMPACT. (See
Figures 1 and 2, respectively.)

Our next-generation development will take the concept
of code re-utilization much further by introducing true soft-
ware components. The tools provided by the Common
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Figure 1: Synergia2, showing the relationship of the many software packages utilized within it.

Figure 2: The multiple components of ML/I.

Component Architecture (CCA) Forum [9], will provide
the necessary infrastructure for building self-contained, in-
terchangeable components. Of particular interest is the Ba-
bel [10] tool, which handles language interoperability, al-
lowing components to be written in Fortran 77, Fortran 90,
C, C++, Python, and Java. A first report on using the CCA
tools for accelerator applications can be found in Refer-
ence [11].

POISSON SOLVERS

Poisson solvers are at the heart of space-charge, beam-
beam and electron cloud simulations. While other collec-
tive simulations may not require Poisson solvers specifi-
cally, the general features of a field calculated on a finite
grid interacting with discrete particles are at the core of the

particle-in-cell (PIC) technique which underlies virtually
every collective simulation. The development of accurate
and fast parallel Poisson solvers is therefore crucial for ad-
vanced simulations.

FFT-based Solvers

The fastest available 3D Poisson solvers utilize the fast
Fourier transform (FFT) to solve the field equation. The
most advanced such solvers currently available are in IM-
PACT, which contains its own parallel FFT implementa-
tion. These solvers have been incorporated into Synergia2
and ML/I.

Our first step toward the next generation of Poisson
solvers has been to develop a solver utilizing the FFTW
package [8]. The advantages of using FFTW are many.
The first, and most obvious, advantage is speed. FFTW
has been shown to be much faster than naive FFT imple-
mentations and as fast as hand-tuned, proprietary, platform
specific implementations. Since the FFTW package is in
wide usage its accuracy has been tested and verified on a
wide variety of platforms and problems. Another, perhaps
lesser-known advantage, is the flexibility in the size of the
grid used for the FFT. While the best-known FFT algorithm
is restricted to powers of two, FFTW can efficiently per-
form transforms on arbitrary length arrays. Since a factor
of two change in grid size on a 3D grid corresponds to a fac-
tor of eight in memory and computation, the ability to use
arbitrary grids is very important. For a long time, the cur-
rent version of FFTW3 did not have parallelism via MPI.
However, the recently-released version 3.2alpha does have
MPI; we have used this version for our solver. It should be
emphasized that all of these features, including parallelism,
come with the FFTW package. Utilizing furthers our orig-
inal objectives of re-use and obtaining the state-of-the-art.

Figure 3 shows the result of the steps in a Poisson solve,
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Figure 3: Result of steps in a Poisson solve in 3D. The charge density ρ is used to determine the scalar potential φ, which
is then differentiated to obtain the components of the electric field �E. This example uses a 32 × 32 × 32 grid. The slices
are along the z-axis; each slice is the average of two adjacent z values.
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Figure 4: Performance of our FFTW-based solver. The
simulation is of a revolution of the Fermilab booster uti-
lizing 1048576 particles and a 32× 32× 256 space-charge
grid. The simulation consisted of 96 space-charge kicks
with accompanying second-order map steps. The Linux
cluster used consists of 48 dual-processor 2.4 GHz Pentium
IV CPUs connected via Myrinet.

in this case using our FFTW-based solver. The parallel per-
formance of our solver appears in Figure 4.

Finite-difference solvers

While FFT-based solvers have pr oven to be very fast,
they also have limitations. They are limited to uniform
grids and open boundary conditions or finite boundary con-
ditions with very limited geometry. More flexibility can be
used in the finite-difference approach, which reduces par-
tial differential equations to linear algebra problems. Incor-
poration of non-uniform grids and arbitrary boundary con-
ditions are straightforward exercises when utilizing finite-
differences. Furthermore, solving the linear algebra prob-
lem via the multigrid method has the best scaling properties
of any known method, including FFTs. Unfortunately, it is
not clear that the asymptotic limit where multigrid beats
FFT has yet been seen in Poisson solves.

Fortunately, a great deal of work has been done on paral-
lel linear algebra. We are developing solvers based on the
PETSc libraries [7], which represent the current state-of-
the art in the area. Our first application has been to create a
solver with a dual-density grid – the grid is fine where the
beam is densest, coarse where the beam fades away. This
approach allows accurate modeling of a high-aspect beam
in a conducting pipe, such as is found in the ILC damping
rings. Figure 5 displays the difference between uniform
and dual-density density grids for a flat beam.
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Figure 5: Transverse view of a uniform grid (a) vs. a dual-
density grid (b) for a high-aspect-ratio beam in a conduct-
ing pipe. Both grids lead to similar accuracy in the field
calculation, but the second grid requires far less computing
time.

PARALLELIZATION SCHEMES

Parallel performance is limited by communication times.
There are two major contributions to communication times
in a parallel PIC code. The first is the communication re-
quired to solve the field equations in parallel. This prob-
lem has been well studied for both FFT and linear algebra
solvers in the general case. The second contribution is spe-
cific to PIC codes; it is the scheme used to communicate
between the particles and the fields. Our codes utilize two
different such schemes: particle/field decomposition and
field decomposition. The two schemes have very different
advantages and disadvantages.

Particle/Field Decomposition

In the particle/field decomposition scheme, the fields are
spatially distributed across processors, i.e., each processor
only knows about a limited spatial portion of the field. The

particles are distributed similarly by their spatial coordi-
nates. In order to maintain this decomposition, the particles
may have to be moved to the appropriate processor after
steps that change their position. IMPACT uses a scheme
of this type utilizing a two-dimensional processor distri-
bution. One advantage of this scheme is that the particle
movement can be done using nearest-neighbor communi-
cation utilizing simple MPI send/receive commands. A
disadvantage of this scheme is that the grid must be pe-
riodically redistributed if the distribution of the particles
changes, otherwise the number of particles on each proces-
sor will become unbalanced, leading to poor performance.
An unfortunate consequence of this scheme is that perfor-
mance can be highly process dependent. A simulation of
a beam whose envelope is oscillating unexpectedly can be
much slower than a stationary beam. The large number of
small messages being passed leads this scheme to be most
sensitive to the networks latency.

Field Decomposition

In the field decomposition scheme, the fields are once
again spatially distributed. The particles, however, are dis-
tributed without regard to their spatial. This method avoids
the complex movement of particles across processors at the
price of reducing charge density information from all pro-
cessors at the beginning of a solve and gathering the result-
ing fields to all processors at the end of a solve. The perfor-
mance of this scheme does not depend on the physics being
modelled; oscillating beams and stationary beams will per-
form equally well.

While the field decomposition scheme is less sensitive
to the process being modelled, it is more sensitive to the
underlying MPI infrastructure. Where the particle/field de-
composition scheme utilizes primarily MPI sends and re-
ceives, the field decomposition scheme utilizes the MPI
collective reduce and scatter methods. The performance of
these methods depends on the quality of the algorithms in
the particular MPI implementation. The differences among
currently available implementations vary to a surprising de-
gree. (See Figures 6 and 7.) The reliance on the MPI
collectives can be a positive feature. Supercomputers are
typically optimized for MPI collective performance by tak-
ing into machine characteristics such as network topology.
This is particularly true for BlueGene; we expect to see
good scaling of the field decomposition when our code is
ported to that platform. At the opposite end of the spectrum
the field decomposition scheme has a different advantage.
Since the messages passed around are the fields, which are
relatively large, the network performance should be limited
by bandwidth, not latency. This means that inexpensive gi-
gabit networking should compare favorably with the more
expensive Infiniband and Myrinet fabrics.
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Figure 6: Time required to perform the allreduce opera-
tion for the charge density in our FFTW-based solver for
a 32 × 32 × 256 grid on the cluster described in the per-
formance figure above. Note how an algorithmic change
between different versions of OpenMPI leads to dramati-
cally different performance.
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Figure 7: Time required to perform the allgather opera-
tion for the charge density in our FFTW-based solver for a
32 × 32 × 256 grid on the cluster described in the perfor-
mance figure above. While the later version of OpenMPI
compared favorably to MPICH2 fort the reduce operation,
the same is not true for the gather operation.
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