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Abstract 
 For an assembled structure (module, tank) of a Linac, 

the single cells, when coupled, loose their individuality 
and in cooperation contribute to the generation of the 
structure modes (resonant frequencies) Fm. On the other 
end these modes are the only measurable quantities. The 
system of the coupled cells can be modelled, in a narrow 
frequency band, as a lumped constant circuit. The modes 
are solution of an equation obtained equating to zero the 
determinant relevant to the lumped circuit representation. 
This is an algebraic equation of the same order as the 
number N of cells. A plausible question can be posed: is it 
possible from a manipulation of the measurable quantities 
(Fm) to draw the lumped circuit parameters, namely 
coupling constants and single cell resonant frequencies? 
The answer is positive if a certain degree of symmetry is 
satisfied. The coefficients of above mentioned equation 
can be easily related to the measured modes Fm. By 
varying, by means of tuners, the tune of a single cell of a 
small unknown amount, any couple of equation 
coefficient moves on a straight line. Therefore, we have 
N(N-1)/2 known straight line coefficients which may give 
the unknowns with extremely high accuracy. 

INTRODUCTION 
It has been already demonstrated that  a coupled cavity 

system is well represented by a lumped constant circuit 
[1-5]. This representation was extremely fruitful to 
describe the behaviour of these cavities in a bandwidth 
sufficiently small with respect to the central frequency. It 
is worthwhile to remind that, once assembled the system, 
the cavities loose their individuality and that the system 
frequency modes are generated by a rather complex 
cooperation of the cell frequencies. The problem that 
generally arises is to extract from the frequency modes all 
the parameters characterizing the structure, in order to 
predict the system behaviour in a variety of cases. This 
tool would allow to easily optimize the structure, once 
some quality index are fixed. 

THE THEORY  
Even if a linac module is formed by a large number of 

cells, we will refer to a subset having the minimum  of 
cells sufficient for the linac characterization.  Let us allow 
for a SCL  full cell symmetric subset, which is  formed by 
two accelerating end cells, two coupling cells and a 
central accelerating one; we foresee that there is a 
coupling of the first order (k1) and of the second order (ka, 

kc).The equivalent circuit is reported in Fig 1. The 
resonant frequencies Fm of the circuit can be found 
equating to zero the relevant determinants, in the 
assumption of vanishing losses. The frequencies Fm  are 
supposed to be measurable.By equating to zero the circuit 

 

Figure 1: The equivalent circuit 

determinant, we get the dispersion relation which is a 
polynomial of the 5th order, 
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whose solutions are functions of six parameters: 
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Because of the symmetry one can demonstrate that, for 

any order of the system, Eq. (1) may be factorized as the 
product of two equations of lower order. In our case: 

(.....)(.....)(.....) 325 GGD ×=  (2) 

Therefore, the resonant frequencies can be derived by a 
separate solution of the two equations: 
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First of all we underline that in Eq. (3), the resonant 

frequency of the central cell  fa and the coupling constant 
ka do not appear. This aspect makes simpler the 
calculation of the remaining unknowns.  

In algebraic equations the coefficients of any power can 
be represented as a combination of the roots. This 
representation depends on the order of the equation and 
the position of the coefficients. Allowing for equation 
G2(…)=0, this representation gives:  
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On the other side we have from the factorization of Eq. 3: 
 

( ) 0
24

4

24

)24(4
)(

2
1

22
2

2
1

22
22

2 =
−−

+
−−

−+−=
kk

ff
F

kk

fkf
FG

c

ec

c

eccK  (6) 
___________________________________________  

*Work supported by INFN and by the Italian Ministry of Research  
#vaccaro@na.infn.it 
 

WEPMN018 Proceedings of PAC07, Albuquerque, New Mexico, USA

07 Accelerator Technology Main Systems

2086

T06 Room Temperature RF

1-4244-0917-9/07/$25.00 c©2007 IEEE



A similar procedure can be adopted for the  factorized 
equation G3(…)=0.  

THE STRAIGHT LINE METHOD 
By comparing Eq.s (5) and (6) one may write the 

following two equalities: 
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Our method consists in isolating in one of the two 

equations an unknown, e.g. fc, and inserting it in the other 
one. We obtain a linear equation of following kind: 
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which may be shortened as:  

BxAy +⋅=  (9) 

where the variables x and y are defined as: 
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In this way, we got rid of the frequency fc which does 
not appear in Eq. (8). As a consequence, by varying the 
resonant frequency of the coupling cells, the two variables 
must move on a straight line, since the known terms are 
not sensitive to the variation of  fc. It is worthy of note 
that with this method we need not to know the amount of 
variation of  fc. Likewise we may proceed by coupling the 
coefficients of  equation G3(…)=0 between them and 
with the ones of  equation G2(…)=0.  As a whole we 
will obtain ten equations similar to Eq. (8). The method 
hereby proposed is a generalization of the one described 
in Ref. [6] where it was used to measure the first order 
coupling constant. 

THE MEASUREMENTS 
The above results are valid under the assumption of 

symmetrical system. However, in the case of asymmetry 
(symmetric cells not having the same frequency), it can 
be shown that the behaviour described by Eq. (2) is 
stationary at first order of this asymmetry. If the 
asymmetry is kept below 10-4 (which may be attainable) 
the perturbation induced is largely negligible. The first 
module of PALME has been conceived in such a way that 
each cavity has two threaded frequency tuners, with 
0.8mm pitch. The maximum excursion in frequency for 
each tuner is about 6 MHz. The frequencies of the cells 
were measured to within the same systematic error (if 

any); therefore it has been possible to equalize the 
symmetric cells. Afterwards, the five resonant mode 
frequencies Fm were measured for different values of the 
frequency fc changed by means of the coupling cavity 
tuners.  

 

 

Figure 2: The straight line method according to Eq. (10)  

In Fig. 2 the pattern obtained with the measured values 
of the frequencies F2 and F4, according to Eq. (10), is 
reported. It is apparent that the points match very well 
with a straight line. The angular coefficient A and the 
known B term are calculated by means of  the least square 
method which delivers, as well as, the measurement 
errors. According to Eq. (9), the angular coefficient gives, 
without intermediate steps, the value of  fe. Conversely 
the value of k1 is given to within the factor (1-kc/2). 
According to the design calculations, the constant kc/2 is 
barely larger than 10-4 , therefore as one may see from 
Table 1, the correction would be immaterial. 

Table 1- Results according to Eq. 9 

fe   (MHz) 3004.392 ± 0.003 
k1 0.0339 ± 0.0003 

 
The same procedure has been adopted allowing for the 

resonant frequencies satisfying the equation G3(…)=0. 
In a similar way we resort to an equation similar to Eq. 
(9): 
 

BxAy +⋅=  (11) 

Since our aim was to find the values of  fa and ka with the 
best approximation, we made an investigation among the 
ten pairs and the optimum choice seems to  be the 
following: 
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The plot, according to Eq. (12), is shown in fig. 3 
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Figure 3: The straight line method according to Eq. (12) 
 

By adopting again the least square method we obtain 
the values of  fa, fc and ka with the relevant errors. 

Table 2  Results according to Eq. 11 

fa  (MHz) 3005.44 ± 0.02 

fc  (MHz) 2996.46 ± 0.03 

ka -0.0067 ± 0.0015 

kc -0.0004 ± N.V. 

Because of the propagation of the errors we have an 
increase of the relative approximation of about one order 
of magnitude. The frequency of the coupling cells is 
calculated in the case of removed tuners. 

By means of the parameter values already calculated it 
has been possible to characterize the coupling cell tuners 
as a function of the progressive number (or fraction) of 
turns. The plot is reported in Fig. 4. The agreement with 
numerical results is excellent: the asymptotic gradient is 
1.110MHz/turn while numerical calculations gives 
1.140MHz/turn.  

 

CONCLUSIONS 
Even if this method has been applied to a five cell 

system, where the unknown are only six, ( fe , fc , fa , k1 , 
ka , kc ), it is most general. 
  This method allowed us to derive five of the six 
unknowns. The sixth unknown (kc) is so small that the 
error is of the same order of magnitude as the variable. 
However, just because the variable is so small, its role in 
the physics of the problem is negligible.  

In principle the subset of the five cells analyzed will be 
formed by six tiles, on which two half cells are bored on 
the opposite faces; on the two end cells only one half 
accelerating cell is bored. The central pair of cells (# 3 
and # 4) may be replaced by another pair so that we 
measure all the accelerating cells. Not only, but we may 
also operate a permutation of the tiles in the pairs in order 
to minimize the deviation of the frequency  fa from the 
nominal one.  

An alternative and faster procedure could be to 
assemble a subset of a larger number of cells (e.g. 9) and 
to measure the modal frequency (Fm). From these 
measurements and forcing some results obtained by the 
method described (k1, ka), the remaining unknown can 
be derived by variational techniques. This procedure is 
viable just because the error propagation has, as a starting 
point, precise data (those measured and those forced).  

Finally the output of this method is a useful guide to 
tune the cells in order to facilitate the field equalization 
when the bead pull method is adopted. 
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Figure 4: Tuner calibration plot . 
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