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Abstract

The Pulse-Line Ion Accelerator (PLIA) is a helical dis-
tributed transmission line. A rising pulse applied to the
upstream end appears as a moving spatial voltage ramp, on
which an ion pulse can be accelerated. This is a promis-
ing approach to acceleration and longitudinal compression
of an ion beam at high line charge density. In most of the
studies carried out to date, using both a simple code for lon-
gitudinal beam dynamics and the Warp PIC code, a circuit
model for the wave behavior was employed; in Warp, the
helix I and V are source terms in elliptic equations for E
and B. However, it appears possible to obtain improved fi-
delity using a “sheath helix” model in the quasi-static limit.
Here we describe an algorithmic approach that may be used
to effect such a solution.

THE MODEL

In this note we present an algorithm for solving for the
fields in a PLIA [1, 2, 3, 4, 5], via an “almost first prin-
ciples” model [1] which accounts for mutual capacitances
and inductances and can capture end effects, transformer
coupling, and dispersion. This is an intermediate level of
description, between a simple circuit model [6] and a full
electromagnetic field computation [7]. Field detail near the
helix wires is not captured, but for beam simulation pur-
poses it is not generally needed. Other recent PLIA re-
search is also described these Proceedings [8, 9] and else-
where [10].

In the axisymmetric limit, charge continuity requires:

∂λ(z, t)
∂t

= −∂I(z, t)
∂z

, (1)

where λ(z, t) is the charge per unit axial length. The helix
current I(z, t) can be thought of as charge per unit time
passing through a cross-sectional plane cut across the wire
itself, or (equivalently) through a plane cut across the helix
and normal to its major axis. Denoting the helix radius by
a and the wire center-to-center spacing by s, the surface
charge density on the helix sheet [Coul/m2] is σ = λ/2πa,
the azimuthal sheet current is Kθ = I/s [Coul/m/s], and
the axial sheet current is Kz = I/2πa [Coul/m/s]. Eq. 1
can be rewritten as:

∂σ(z, t)
∂t

= −∂Kz(z, t)
∂z

. (2)
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We will use Eq. 2 to advance the surface charge den-
sity σ(z) to the future time level, and then compute the
advanced-time electrostatic potential φ(r, z), and thus the
electric field E(r, z) that is needed in the interior of the
helix to advance the simulation particles.

It is now possible to establish a correspondence with the
circuit model of [6]; assume (for convenience) one compu-
tational node per turn of the helix, that is, Δz = s. The σ i

at each node i can be integrated around the helix circum-
ference and over an axial interval Δz to yield a charge Q i.
Then, those charges are related to the voltages on the set of
nodes by the mutual capacitances:

∑

j

CijVj = Qi . (3)

In the simplest model, the only nonzero elements of C ij

were the diagonal entries. Here we may precompute the
capacitance matrix Cij and, at each time step, invert it to
obtain the advanced-time voltages after we have computed
the source terms via Eq. 2. In the circuit model, the capaci-
tance between each helix turn and the grounded outer pipe
(with dielectric in between) plays a major role. Since σ
only establishes the jumps in Er and not the actual poten-
tial values, the outer-wall boundary condition in the Pois-
son solution used to establish Cij serves to set the capaci-
tances to ground, Cii.

For the purposes of a 1-D circuit model, knowledge of
the capacitance matrix suffices. However, to advance the
particles in an (r, z) or 3-D simulation it is necessary to ob-
tain the electric field structure, and so (rather than using the
capacitance matrix) a Poisson solution may be carried out
at each step, including the beam charge as a source term.

The helix voltage V (z, t) is related to the changing ax-
ial magnetic flux through the helix. Taking a path of inte-
gration in Faraday’s law that passes inside the helix wire,
extending axially by a distance Δz, the flux Φ(z, t) is en-
circled Δz/s times; the corresponding voltage change is:

ΔV = −Δz

s

∂

∂t
Φ(z, t) , (4)

where the total flux through the helix (due to its own cur-
rent and that of any driving “primary” winding) is:

Φ(z, t) =
∫ a

0

Bz(r, z, t) 2πr dr . (5)

In the continuum limit,

∂

∂t
Φ(z, t) = −s

∂V (z, t)
∂z

. (6)
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It is the magnetic field B(r, z, t), not the flux, that is de-
sired at the advanced time, and initially it was not clear that
the flux (a scalar function of z) contains sufficient informa-
tion to uniquely specify B(r, z, t) (a vector function of r
and z). A key realization was that a set of N fluxes can
uniquely specify a set of N current sources (correspond-
ing to N turns of the helix, when Δz = s), and then those
sources can be used to compute B(r, z, t).

The azimuthal magnetic field component, Bθ(r, z), is
neglected; as seen in direct solutions of the Maxwell equa-
tions [7], it is small near the beam. Thus the current
sources are assumed purely azimuthal (circular hoops);
at each computational node on the helix, the source is
Kθ(z, t)Δz = (2πa/s)Kz(z, t)Δz = I(z, t)Δz/s.

To make correspondence with the above-mentioned cir-
cuit model, the voltage change from node i to node i + 1 is
related to the currents at the nodes by:

Δz
∑

j

Mij
dKθ

dt
=

Δz

s

∑

j

Mij
dIj

dt
= Vi+1 − Vi . (7)

In the circuit model, Ii is the current flowing between “volt-
age” nodes i and i + 1. It is desirable to avoid two-cell
difference expressions such as Vi+1 − Vi−1. The Yee dis-
cretization of finite-difference time-domain electromagnet-
ics [11] employs “staggered” grids for E and B, so as to
preserve important properties of the continuum equations.
Thus, we “offset” the axial locations of the currents from
those of the voltages by half a cell. By examination of the
governing equations, the “centering” of all other quantities
can be developed. See Fig. 1.

Figure 1: Discretization, showing computational nodes.

When Δz = s, Eq. 7 describes the usual mutual-
inductance relationship. Most of our work with the cir-
cuit model used the simpler local self-inductance coupling,
Li = −Mii. For any node spacing, equations 6 and 7 are
equivalent (in a finite-difference sense) when:

∑

j

MijIj = −Φi , (8)

which is a familiar formula for mutual inductances [12]. In
practice, the Mij are pre-computed by setting Ij to unity
for each j in turn, with the other currents zero, computing
B(r, z), and measuring the fluxes Φi at all axial nodes.

The model does not require Δz = s. To allow arbitrary
zoning in the simulation code, we interpret the mutual in-
ductances as coupling the magnetic fluxes through the tori
associated with the individual computational zones with the
currents in those zones. Note that we associate Ij with the
current flowing in the helix wire through the plane z = z j .

Ij is not the total current flowing azimuthally in computa-
tional zone j on the helix, and is insensitive to zone size
when sufficiently small zones are employed. To avoid con-
fusion on this point, we rewrite Eq. 8 as:

2πa
∑

j

MijKz,j = −Φi , (9)

AN ALGORITHM

Many variations are available; we outline one possibil-
ity. The algorithm consists of a pre-computation phase to
establish matrices that are needed during the time-advance,
and a series of actions at each computational time step, to
advance the system through an interval Δt. Denoting the
time level (abbreviated “tl”) of a quantity by a superscript,
the step is described herein as an advance of the system
from tl 0 to tl 1. The sheet current Kz is advanced from
tl 1/2 to tl 3/2; it can be obtained at tl 1 by interpolation
for diagnostics or magnetic field computation. The overall
procedure is formally a “leap-frog” advance, and is “time
centered,” reversible, and second-order accurate. At start-
up, the current in the helix may be assumed to be zero, or a
half-step may be taken to obtain values of Kz at tl 1/2.

Pre-computation: If only the voltages and currents on
the helix are desired (an improved circuit model), precom-
putation of the capacitance matrix is appropriate; it may
be desirable in general. An enhanced 1-D particle model
might use applied fields computed via a separately precom-
puted Green’s function that relates a unit voltage on the he-
lix at z = z0 to a voltage pattern V (z − z0) averaged over
a nominal beam cross-section. Beam self forces might be
modeled using a simple “dλ/dz” formulation, or (better)
yet another precomputed Green’s function averaging across
a nominal beam cross-section for both the charge-density
and the force on a “slice” as a function of z. In all cases,
the mutual inductances of Eq. 9 should be pre-computed.

Time advance: Enter the time step with σ defined at tl 0
and Kz defined at tl 1/2.
(a) Advance σ using the continuity equation:

(σ1
i − σ0

i )/Δt = −(K1/2
z,i − K

1/2
z,i−1)/Δz . (10)

(b) For the simplest case of an improved circuit model, it
suffices to associate charges Qi = σiΔz with each node,
and solve Eq. 3 for the Vj values. For the full simulation
case, the surface charge induces a jump in Er at the helix:

εout

[
∂φ1(r, z)

∂r

]

r=a+

− εin

[
∂φ1(r, z)

∂r

]

r=a−
= −σ1(z) ,

(11)
where ε is the dielectric constant, and “out” and “in” denote
r > a and r < a. There are multiple possibilities:
(i) One could solve coupled Laplace equations with this
jump in the gradient of φ as a constraint. This is not simply
a matter of solving two Laplace equations with Neumann
boundary conditions at the helix in the inner and outer re-
gions, since only the jump in ∂φ/∂r is known in advance.
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The additional constraint to be imposed is that φ(a) take on
the same values in the two subdomains.
(ii) Alternatively, we may “smear” the surface charge by
defining a charge density in the computational cell at the
radius of the helix as ρ = σ/Δr, then solve a Poisson
equation (including source terms from helix charge, beam
particles, stray electrons, and any other sources):

∇ · (ε∇φ1) = −ρ1 , (12)

where the “stencil” for cells with radial index k correspond-
ing to the helix radius might be:

εout(φ1
k+1 − φ1

k) − εin(φ1
k − φ1

k−1)
Δr2

+
(

∂2φ

∂z2

)
= − σ1

Δr
.

(13)
For an infinitesimally thin sheet, the ∂2φ/∂z2 term is not
needed since all z variations are “slow” in comparison to
jump in the radial electric field; but for a finite-thickness
layer it is appropriate to include it.
(c) From the solution φ1(r, z) to the Poisson equation, the
electric field E1(r, z) can be obtained via finite differences,
and the voltages V 1(z) at the computational nodes on the
helix obtained as the corresponding values of φ1.
(d) Time-advance the magnetic flux through each helix
node i using a finite-difference form of Eq. 6:

(Φ3/2
i − Φ1/2

i )/(Δt) = −s(V 1
i+1 − V 1

i )/Δz . (14)

(e) Obtain currents at the helix nodes from the magnetic
fluxes by inverting the inductance matrix, Eq. 9.

(de′) Note that steps (d) and (e) may be combined, and
introduction of the intermediary flux quantities Φ avoided,
by substituting Eq. 9 into Eq. 14 to yield:

Δz

s

2πa

Δt

∑

j

Mij(K
3/2
z,j − K

1/2
z,j ) = (V 1

i+1 − V 1
i ) , (15)

where the sum involving the K
3/2
z is to be segregated into

the left member and the matrix inverted. This is a dense
matrix, with diminishing elements away from the diagonal.

This approach is especially attractive when the helix is
terminated in a helical resistive line, so that the voltage
drop per unit length has both inductive and resistive con-
tributions in series (since the current in the inductor equals
that in the resistor). The voltage drop between nodes i + 1
and i separated by a helix segment with a resistance per
unit length Ri has two contributions:

Δz

s

2πa

Δt

∑

j

Mij(K
3/2
z,j − K

1/2
z,j )

+2πaΔzRi

(K3/2
z,i + K

1/2
z,i )

2
= (V 1

i+1 − V 1
i )

(16)

(terms in K
3/2
z are to be segregated into the left member).

(f) Use the resulting Kz,j as sources to obtain B1(r, z)
or B3/2(r, z), if necessary (when electron orbits are being
computed, or for improved accuracy in ion orbits).

The “drive” can enter in any of several ways:
(i) If it is a current source, it replaces step (e) at node 1

using the prescribed input Iinput(t).
(ii) If it is a voltage source, it enters as an internal bound-

ary condition in the Poisson solution of step (b).
(iii) If it is via a transformer primary, itself driven by a

current source, it becomes an extra “node 0” in the mutual
inductance matrix.

DISCUSSION

The equations presented herein define a detailed one-
dimensional model of wave propagation on the helix that
can be coupled with a one-dimensional particle-in-cell
model. The simplicity of such a model is attractive for de-
velopment of insight and for rapid scoping studies; indeed,
the simpler circuit model presented earlier lent valuable in-
sight into the behavior of this novel system.

The circuit model from that earlier note was adapted for
use in Warp, which allows multi-dimensional (2-D and 3-
D) particle-in-cell simulations to be carried out, including
detailed space charge fields. Since an improved model is
desired for design and analysis studies, we hope to imple-
ment this improved field model in Warp.
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