
GAIN SCHEDULED NEURAL NETWORK TUNED PI FEEDBACK
CONTROL SYSTEM FOR THE LANSCE ACCELERATOR*

Sungil Kwon#, J. Davis, M. Lynch, M. Prokop, S. Ruggles, and P.Torrez
LANL, Los Alamos, NM 87545, U.S.A.

Abstract
The current LANSCE LLRF system is an analog PI
Feedback control system which achieves the amplitude
and phase error within 1% and 1 degree. The feedback
system receives the cavity amplitude and phase and the
crosstalk between the amplitude and the phase paths is
significant. We propose an In-phase (I) and Quadrature
(Q) based feedback control system which easily
decouples the crosstalk of I and Q channels. A gain
scheduled PI feedback controller with optimally
generated set point trajectory reduces the transient peak of
the feedback controller and hence reduce the fatigue of
the RF amplifier chain. An additional feature of the
controller is the Neural network based self-tuning PI
feedback, where the neural network tunes the feedback
gains to minimize the errors in the least squares sense.
The proposed control system is implemented with Altera
Stratix II FPGA. The control system is modeled with DSP
Builder and automatically generates HDL. Altera SOPC
Builder is used for the hardware integration of the DSP
Builder model, memories, peripherals, and 32 bit NIOS
II embedded processor. NIOS II processor equipped with
real time operating system communicates with the host
computer via Ethernet, uploads data, computes
parameters, and downloads parameters. The proposed
control system is tested with the low power test-stand for
the robustness of the algorithm.

INTRODUCTION
HE primary controllers for the LANSCE feedback
system are proportional-integral (PI) controllers. It

was built on an analog controller 40 years ago. No
network connection, tuning automation were
implemented. To obtain the best performance of the linear
accelerator (linac) controller systems, 52 individual
controller gains should be properly tuned. In addition, the
feedback controllers are located in the tunnel, which
makes it impossible to tune the system in the central
control room. A personnel has to sweep the tunnel to
check the controller signals and tune the controller gains
manually, observing the oscilloscope display of the
signals. Tuning is time consuming and requires
automation remotely.
 In this paper, a self-tuning PI controller scheme
supported by the network is proposed. For the tuning, a
neural network is implemented in the remote system.
Measurement data is uploaded to the remote system via
Ethernet, the controller gains are tuned in the remote

system, and new controller gains are downloaded to the
controller via Ethernet. The controller hardware is
implemented on the Altera FPGA which is equipped with
the NIOS II 32 bit RISC processor. For the controller and
receiver/transmitter signal processing hardware design,
the VHDL codes are generated using DSP builder. For the
integration of the DSP builder system, NISO II processor,
Ethernet MAC, and other necessary system components
such as external memory, RS232C, SIO, etc., SOPC
Builder of Altera is used. NISO II processor receives the
tuned controller gains and programs the memory mapped
registers. The gain update is performed once at each RF
pulse. The tuning of the gains is performed in the remote
system which is equipped with Matlab/Simulink.

NEURAL NETWORK BASED TUNING
Neural networks have attracted the attention of many

researchers and have been applied to many fields recently.
Since the pioneering work [1], numerous neural networks
have been developed and extended their applications from
pattern recognition, optimization, to control, dynamic
system identification, prediction [2].

Neural networks have very close ties with optimization.
Many learning algorithms have been developed based on
optimization techniques such as least mean squares and
steepest decent algorithms. Neural networks learn from
examples rather than having to be programmed in a
conventional sense. In this, neural networks resemble the
adaptive control/signal processing.

The neural network tuning discrete time PI controller
configuration is shown in figure 1. The discrete time PI
controller is given by

)())1()(()1()(tektetektutu ip +−−+−= (1)

)()()(tytrte −= (2)
where t is the sample number.

For PI gain tuning, a single neuron is employed [3].
Figure 2 shows a neuron model. In this figure, the total
input for the neuron iu is given by

 ∑
=

=
1

0n
nni dwu (3)

where nw and nd are the individual connection weights
and the individual input signals. The output for the neuron

oy is
)(io ufy = (4)
The output oy is decided by connection weight 0w , 1w ,
the squared error function E:

T

*Work Supported by the United States Department of Energy, National
Nuclear Security Agency, under contract DE-AC52-06NA25396
#skwon@lanl.gov

Proceedings of PAC07, Albuquerque, New Mexico, USA WEPMS022

07 Accelerator Technology Main Systems

1-4244-0917-9/07/$25.00 c©2007 IEEE

T25 Low Level RF

2379

 2
0)(

2
1

iyyE −= (5)

is defined for weights. A gradient descent method to
obtain a minimum value E . For ii uuf =)(, the weight
change nwΔ and the update of the weights are given by

 nrn
n

i

i

o

o
nn deC

w
u

u
y

y
ECw −=

∂
∂

∂
∂

∂
∂−=Δ (6)

 nnn wtwtw Δ+=+)()1((7)
where nC is a positive constant representing learning
step and ior yye −= . With the above neural network
setting, the PI controller gains pK and iK are

corresponding to the neural network weights 0w , 1w ,
respectively. This is shown in figure 2. The inputs for the
neuron are an error between the reference signal and the
cavity output signal, the integral of the error. The teaching
signal iy is the nominal operating controller output of
the gain scheduling.

DSP / SOPC BUILDERS, NIOS II
PROCESSOR, AND NETWORK

DSP builder is an ALTERA tool that automatically
generates HDL codes of the Matlab/Simulink model. It
helps the rapid prototyping of the FPGA implementation
of the signal processing in mind [4]. It allows the
hardware to be abstracted to a higher level so that the
FPGA and the system waveform developers can operate
in a common environment or be one-in-the-same-person.
With this tool, a new design flow consists of five
segments: defining architecture, implementing/designing
modules, integration of modules, translating the design to
physical FPGA, and verifying the part in the lab.

SOPC Builder is a system development tool for creating
systems based on processors, peripherals, and
memories[4]. SOPC Builder automates the task of
integrating hardware components into a larger system.
The SOPC Builder Link Library in DSP Builder supports
peripherals that use the Avalon interface specification and
provides custom instruction blocks for use with a NIOS II
embedded processor. The Avalon interface specification
provides peripheral designers with a basis for describing
the address-based read/write interface found on master
(for example, DMA controller or a microprocessor) and
slave peripherals (for example, a memory, UART, or
timer).

A system generated by DSP builder functions as a
custom peripheral to SOPC Builder. To integrate a DSP
Builder design system into a SOPC Builder system, the
DSP Builder design system must meet the Avalon
interface specification and qualify as a SOPC Builder-
ready component. The Avalon Master and Avalon Slave
blocks in DSP Builder provide a seamless flow for
creating a DSP Builder block as a custom peripheral and
integrating the block into a SOPC Builder system. The
Avalon Master and Avalon Slave blocks in DSP Builder

make it possible to automate the process of specifying
Avalon ports that are compatible with the Avalon bus, to
support multiple Avalon Master and Slave instantiations,
to save time spent hand coding the glue logic that
connects Avalon ports to DSP blocks to meet the Avalon
Interface Specification, and to generate a component
descriptor file (class.ptf) which SOPC Builder can
recognize as a component with master or slave ports.

With the Avalon blocks in the DSP Builder library, we
can design the DSP function and add an Avalon block
which makes it a custom peripheral within Simulink
environment. Each Avalon block can be instantiated
multiple times in a design to implement an SOPC
component with multiple master and/or slave ports.
 NIOS II processor is a general purpose RISC processor
core [5]. It provides full 32-bit instruction set, data path,
address space, access to a variety of on-chip peripherals,
and interfaces to off-chip memories and peripherals. Both
the instruction and data buses are implemented as Avalon
master ports that adhere to Avalon interface specification.
The data master port connects to both memory and
peripheral components, while the instruction master port
connects only to memory components. The NIOS II
architecture provides memory-mapped I/O access. Both
data memory and peripherals are mapped into the address
space of the data master port.

The NIOS II IDE contains the MicroC/OS-II real time
operating system (RTOS) with multithread environment
and NicheStack TCP/IP Stack software component. These
provide designers with the ability to build networked
embedded systems applications for the NIOS II
processor[5]. The Altera implementation of the
NicheStack TCP/IP Stack includes an API wrapper which
provides the standard socket API. The SOPC builder
system incorporated with NIOS II processor contains an
Ethernet interface, or media access controller (MAC)
(figure3). The Altera provided NicheStack TCP/IP Stack
includes driver support for the SMSC lan911c111
MAC/PHY device and Altera triple speed Ethernet
megacore function.

IMPLEMENTATION AND
EXPERIMENTAL RESULTS

Figure 4 shows the experimental setting. In the Matlab,
the Ethernet Client environment is constructed. The
FPGA board serves as the Ethernet server which has its
own IP address. The system parameters such as the
cavity rotation matrix, IF gain, set points I and Q, and
time characteristics of the set points I and Q will be set in
the customer Matlab graphical user interface (figure 5).
The parameters are then transmitted to the embedded
processor and then loaded to the registers in the FPGA
synchronized with the external RF gate pulse. The
necessary data for the RF on period such as the cavity
fields I and Q are temporarily stored in the memory and
when the uploading is called, the data transmitted to the
Matlab Client.

WEPMS022 Proceedings of PAC07, Albuquerque, New Mexico, USA

07 Accelerator Technology Main Systems

2380

T25 Low Level RF

1-4244-0917-9/07/$25.00 c©2007 IEEE

The data sampling rate for the memory storage is about
1.875 μsec because of the NIOS II CPU. In the Matlab,
with the uploaded data, the weights of the neural network
are updated. The updated weights then are transmitted to
the FPGA and the controller performs the task with the
new PI gains. The Ethernet implemented supports the 10
Mbps. Figure 6 shows the cavity I and Q trajectories as
the Neural Network updates the weights at each RF
pulse.

REFERENCES
[1] W. McCulloch and W. Pitts, “A logical calculus of

the ideas immanent in nervous activity,” Bulletin of
Math. Biophysics, vol 5, pp.115-143, 1943.

[2] G. W. Ng, Application of Neural Networks to
Adaptive Control of Nonlinear Systems, John Wiley
& Sons INC. , New York, 1997.

[3] S. Yanagawa and I. Miki, “PID Auto-tuning
Controller using a single Neuron for DC
Servomotor,” 1992 IEEE International Symposium
on Industrial Electronics, pp. 277-280, 1992.

[4] Altera, Quartus II Version 7.0 Handbook, 2007.
[5] Altera, NIOS II Software Developer’s Handbook,

2007.

 Figure 1. Discrete time PI control system

 Figure 2. Neural Network Tuned PI Control System

 Figure 4. Experimental Setting

Figure 3. SOPC Builder System including CPU,
Ethernet, and DSP Builder System Components

 Figure 5. Matlab Graphical User Interface for System
 Parameter Setting

Figure 6. Cavity I and Q signals as the neural network
proceeds the weight update. Red Dotted lines shows the
Shaped Set Point. At the 8th RF pulse, the optimal gain Ki
is obtained

0 10 20 30 40 50 60 70 80 90
-200

0

200

400

600

800

1000

1200

1400

1600

1800

Sample No

cavity Q

cavity I
8th RF Pulse

Proceedings of PAC07, Albuquerque, New Mexico, USA WEPMS022

07 Accelerator Technology Main Systems

1-4244-0917-9/07/$25.00 c©2007 IEEE

T25 Low Level RF

2381

