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Abstract 
The current LANSCE LLRF system  is an analog PI 
Feedback control system which  achieves the amplitude 
and phase error within  1% and 1 degree. The feedback 
system receives the cavity amplitude and phase and  the  
crosstalk between the amplitude and the phase paths is 
significant. We  propose an In-phase (I) and Quadrature 
(Q) based feedback control system which easily 
decouples the crosstalk of I and Q channels. A gain 
scheduled PI feedback controller with optimally 
generated set point trajectory reduces the transient peak of 
the feedback controller and hence reduce the fatigue of 
the RF amplifier chain.  An additional feature of the 
controller is the Neural network based self-tuning PI 
feedback, where the neural  network tunes the feedback 
gains  to minimize the errors in the least squares sense.  
The proposed control system  is implemented with Altera 
Stratix II FPGA. The control system is modeled with DSP 
Builder and automatically  generates HDL.  Altera SOPC 
Builder is used for the hardware integration of the DSP 
Builder model,   memories, peripherals,  and 32 bit  NIOS 
II embedded processor. NIOS II processor equipped with 
real time operating system communicates with the host 
computer via Ethernet, uploads data, computes 
parameters, and downloads parameters.  The proposed 
control  system is tested with the low power test-stand for 
the robustness of the algorithm. 

INTRODUCTION 
HE primary controllers for the LANSCE feedback 
system are proportional-integral (PI) controllers.  It 

was built on an analog controller 40 years ago. No 
network connection, tuning automation were 
implemented. To obtain the best performance of the linear 
accelerator (linac) controller systems, 52 individual 
controller gains should be properly tuned. In addition, the 
feedback controllers are located in the tunnel, which 
makes it impossible to tune the system in the central 
control room.  A personnel has to sweep the tunnel to 
check the controller signals and tune the controller gains 
manually, observing the oscilloscope display of the 
signals. Tuning is time consuming and requires 
automation remotely.   
    In this paper, a self-tuning PI controller scheme 
supported by the network is proposed. For the tuning, a 
neural network is implemented in the remote system. 
Measurement data is uploaded to the remote system via 
Ethernet, the controller gains are tuned in the remote 

system, and new controller gains are downloaded to the 
controller via Ethernet. The controller hardware is 
implemented on the Altera FPGA which is equipped with 
the NIOS II 32 bit RISC processor. For the controller and 
receiver/transmitter signal processing hardware design, 
the VHDL codes are generated using DSP builder. For the 
integration of the DSP builder system, NISO II processor, 
Ethernet MAC, and other necessary system components 
such as external memory,   RS232C, SIO, etc., SOPC 
Builder of Altera is used.  NISO II processor receives the 
tuned controller gains and programs the memory mapped 
registers. The gain update is performed once at each RF 
pulse. The tuning of the gains is performed in the remote 
system which is equipped with Matlab/Simulink.  

NEURAL NETWORK BASED TUNING 
Neural networks have attracted the attention of many 

researchers and have been applied to many fields recently. 
Since the pioneering work [1], numerous  neural networks 
have been developed and extended their applications from 
pattern recognition, optimization, to control, dynamic 
system identification, prediction [2].  

Neural networks have very close ties with optimization. 
Many learning algorithms have been developed based on 
optimization techniques such as least mean squares and 
steepest decent algorithms. Neural networks learn from 
examples rather than having to be programmed in a 
conventional sense. In this, neural networks  resemble the 
adaptive control/signal processing. 

The neural network tuning discrete time PI controller 
configuration is shown in figure 1. The discrete time PI 
controller is given by 
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where t  is the sample number.  

For PI gain tuning, a single neuron is employed [3].  
Figure 2 shows a neuron model.  In this figure, the total 
input for the neuron  iu  is given by   
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where nw  and nd are the individual connection weights 
and the individual input signals. The output for the neuron  

oy  is       
  )( io ufy =     (4) 
The output  oy is decided by connection weight 0w , 1w , 
the squared error function E: 
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is defined for weights. A gradient descent method to 
obtain a minimum value E .  For ii uuf =)( , the weight 
change nwΔ and the update of the weights are given by 
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where nC  is a positive constant representing learning 
step and ior yye −= . With the above neural network 
setting, the PI controller gains pK  and iK  are 

corresponding to the neural network weights 0w , 1w , 
respectively. This is shown in figure 2. The inputs for the 
neuron are an error between the reference signal and the 
cavity output signal, the integral of the error. The teaching 
signal  iy  is the nominal operating controller output of 
the gain scheduling. 

DSP / SOPC BUILDERS,  NIOS II   
PROCESSOR, AND NETWORK  

DSP builder is an ALTERA tool that automatically 
generates  HDL codes of the Matlab/Simulink model. It 
helps the rapid prototyping of the FPGA implementation 
of the signal processing in mind [4]. It allows the 
hardware to be abstracted to a higher level so that the 
FPGA and the system waveform developers can operate 
in a common environment or be one-in-the-same-person.  
With this tool, a new design flow consists of five 
segments: defining architecture, implementing/designing 
modules, integration of modules, translating the design to 
physical FPGA, and verifying the part in the lab. 

SOPC Builder is a system development tool for creating 
systems based on processors, peripherals, and 
memories[4]. SOPC Builder automates the task of 
integrating hardware components into a larger system.  
The SOPC Builder Link Library in DSP Builder supports 
peripherals that use the Avalon interface specification and 
provides custom instruction blocks for use with a NIOS II 
embedded processor. The Avalon interface specification 
provides peripheral designers with a basis for describing 
the address-based read/write interface found on master 
(for example, DMA controller or a microprocessor) and 
slave peripherals (for example, a memory, UART, or 
timer). 

A system generated by DSP builder functions as a 
custom peripheral to SOPC Builder. To integrate a DSP 
Builder design system into a SOPC Builder system, the 
DSP Builder design system must meet the Avalon 
interface specification and qualify as a SOPC Builder-
ready component. The Avalon Master and Avalon Slave 
blocks in DSP Builder provide a seamless flow for 
creating a DSP Builder block as a custom peripheral and 
integrating the block into a SOPC Builder system. The 
Avalon Master and Avalon Slave blocks in DSP Builder  

make it possible to automate the process of specifying 
Avalon ports that are compatible with the Avalon bus, to 
support  multiple Avalon Master and Slave instantiations,  
to save time  spent hand coding the glue logic  that 
connects Avalon ports to DSP blocks to meet the Avalon 
Interface Specification, and to generate a component 
descriptor file (class.ptf) which SOPC Builder can 
recognize as a component with master or slave ports. 

With the Avalon blocks in the DSP Builder library, we 
can design the DSP function and add an Avalon block 
which makes it a custom peripheral within Simulink 
environment. Each Avalon block can be instantiated 
multiple times in a design to implement an SOPC 
component with multiple master and/or slave ports. 
     NIOS II processor is a general purpose RISC processor 
core [5]. It provides full 32-bit  instruction set,  data path, 
address space, access to a variety of on-chip peripherals, 
and interfaces to off-chip memories and peripherals. Both 
the instruction and data buses are implemented as  Avalon 
master ports that adhere to Avalon interface specification. 
The data master port connects to both  memory and 
peripheral components, while the instruction master  port 
connects only to memory components. The NIOS II 
architecture provides memory-mapped I/O access. Both 
data memory and peripherals are mapped into the address 
space  of the data master port.  

The NIOS II IDE contains the MicroC/OS-II real time 
operating system (RTOS) with multithread environment 
and NicheStack TCP/IP Stack software component. These 
provide designers with the ability to build networked 
embedded systems applications for the NIOS II 
processor[5]. The Altera implementation of the 
NicheStack TCP/IP Stack includes an API wrapper which 
provides the standard socket API. The SOPC builder 
system incorporated with NIOS II processor contains an 
Ethernet interface, or media access controller (MAC) 
(figure3). The Altera provided NicheStack TCP/IP Stack 
includes driver support for the SMSC lan911c111 
MAC/PHY device and Altera triple speed Ethernet 
megacore function.  

IMPLEMENTATION AND 
EXPERIMENTAL RESULTS 

Figure 4 shows the experimental setting. In the Matlab, 
the Ethernet Client environment is constructed. The 
FPGA board serves as the Ethernet server which has its 
own IP address.  The system parameters such as the 
cavity rotation matrix, IF gain, set points I and Q, and 
time characteristics of the set points I and Q will be set in 
the customer  Matlab graphical user interface (figure 5). 
The parameters are then transmitted to the embedded 
processor and then loaded to the registers in the FPGA 
synchronized with the external RF gate pulse. The 
necessary data for the RF on period such as the cavity 
fields I and Q are temporarily stored in the memory and 
when the uploading is called, the data transmitted to the 
Matlab Client.  
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The data sampling rate for the memory storage is about  
1.875 μsec because of the  NIOS II CPU. In the Matlab,  
with the uploaded data, the weights of the neural network 
are updated. The updated weights then are transmitted to 
the  FPGA and the controller performs the task with the 
new PI gains. The Ethernet implemented supports the 10 
Mbps. Figure 6 shows the cavity I and Q trajectories as 
the Neural Network   updates the weights at each RF 
pulse. 
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                Figure 1.  Discrete time PI control system 

 

 
   Figure 2.  Neural Network Tuned PI Control System 
 

 
                   Figure 4.  Experimental Setting 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       
Figure 3.  SOPC Builder System including CPU, 
Ethernet, and DSP  Builder System Components 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   Figure 5.  Matlab Graphical User Interface for System  
   Parameter Setting 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
Figure 6.  Cavity I and Q signals as the neural network 
proceeds the weight   update. Red Dotted lines shows the 
Shaped Set Point. At the 8th RF pulse, the optimal gain Ki 
is obtained 
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