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Abstract

The effect of nonlinearity on plasma wake wave excited
by a relativistic cylindrical charged bunch is
investigated. It is shown that owing to the nonlinearity
the amplitude of wake wave gets modulated in the
longitudinal direction. The nonlinear wavelength in the
excited field changes in the transverse direction with the
result that the phase front is distored and a turbulence
developed. The nonlinear phase front distortion may be
compensated by radial change of unperturbed plasma
density.

1  INTRODUCTION
The plasma-based accelerator concepts are presently
actively developed both theoretically and
experimentally. This is due to the ability of plasma to
support large acceleration rates that will reach tens of
GeV/m, far in excess of those attained in conventional
accelerators. Charged bunches can be accelerated and
focused by the field of relativistic plasma waves that are
excited by relativistic charged bunches (Plasma
Wakefield Accelerator (PWFA)). Both the linear
wakefield and 1D nonlinear theories have been studied
in sufficient detail (see e. g. overview in Ref. [1]). The
allowance for finite transverse sizes of the drivers (that is
more realistic case) and, accordingly, the transverse
motion of plasma electrons complicate the treatment of
the problem in the nonlinear regime. In the general case
the analytical solution of this regime seems impossible
and the use of numerical methods are usually required.
Here we study the effect of nonlinearity on two-
dimensional plasma wake waves as well as discuss the
cause of radial steepening of the field shown in Ref. [2].

2  BASIC EQUATIONS
We shall consider nonlinear steady fields excited in
plasma by a rigid cylindrical electron bunch in the
framework of cold hydrodynamics with immobile ions.
Let the bunch travel in Z direction at the velocity v0

close to that of light, and the distribution of charge in the
bunch do not depend on the azimuthal angle θ.
Equations for non-zero components of plasma electrons
momentum and electromagnetic field that describe the
nonlinear wake-fields are (see also Refs. [2,3]):
__________________
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   − + + =∂ ∂ β∂ ∂ βθH z E z Nr r e/ / ,0       (3)

⊥∇ + + + =θ β∂ ∂ β βαH E z Nz z e/ ,0       (4)

β∂ ∂ ∂ ∂ ∂ ∂θH z E z E rr z/ / / ,− + = 0       (5)

e p r zN N r E E z= − − ∇ −⊥( ) / .α ∂ ∂       (6)

As usual, Eqs. (1) and (2) were derived taking into
account that the curl of the generalized momentum is
zero, β2H−rotP=0, or in our case

2 0β ∂ ∂ ∂ ∂θH P r P zz r+ − =/ / .          (7)

Also we allow for radial variations of unperturbed
plasma density. In Eqs. (1)−(6) γe=(1+Pz

2+Pr

2)1/2 is a
relativistic factor, βz,r=Pz,r/γe and Ne=ne/np(0) are
respectively dimensionless components of velocity and
density of plasma electrons, np(r) is the unperturbed
density of plasma electrons, Np=np(r)/np(0),
α=nb(z,r)/np(0), nb is the concentration of bunch
electrons, β=v0/c, ∇⊥=∂/∂r+1/r. The space variables are
normalized to λp(r=0)/2π= 1/kp(r=0), z=kp(r=0)(Z−v0t),
where λp and kp are the linear wavelength and
wavenumber. The momenta and velocities are
normalized respectively to mec and the velocity of light
and the strengths of electric and magnetic fields - to the
nonrelativistic wave-breaking field at the axis
EWB(r=0)=meωpe(r=0)v0/e (EWB[V/cm]≈0.96×np

1/2[cm-3]),
ωpe=(4πnpe

2/me)
1/2 is the electron plasma frequency, me

and e are the rest mass and absolute value of electron
charge. The field of forces acting on relativistic electrons
in the excited field is F(−eEz, e(Hθ−Er), 0).

3  THE CASE OF WIDE BUNCH
Consider the case of wide bunch (kprb>>1, where rb is the
bunch radius) when the transverse components of an
exciting field are small and the longitudinal components
close to the bunch axis are approximately equal to those
predicted by one-dimensional nonlinear theory. Here one
can apply the perturbation method taking the 1D
nonlinear mode as the ground state. So, for wide bunches
in uniform plasma [Np(r)=1] we shall seek the solution of
Eqs. (1)−(6) in the vicinity of bunch axis in the form:
Pz≈P0+ρzr

2, Pr≈ρrr, Ez≈E0+lzr
2, Er≈l rr, Hθ≈hr, α≈α0–δr2,

where P0(z) and E0(z) are the values of longitudinal
momentum and the strength of electric field at the axis,
ρz,r(z), lz,r(z), h(z), δ(z)<<1. In the zero approximation in
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this values one can obtain the equations for P0 and E0

that describe the 1D nonlinear regime that is studied
sufficiently well [4]. In the first approximation in the
small values we have:

2 2
0d d z Ad dz B Nz z zρ ρ ρ β δ/ / ,− + =          (8)

where A=(dβ0/dz)2N0/β, B=(N0/β)(βN0

2/γ0

3−d2β0/dz2), β0,
N0 and γ0 are respectively dimensionless velocity, density
and the relativistic factor of plasma electrons in 1D
nonlinear regime. The remaining quantities can be
expressed through ρz. In Fig. 1 we show the focusing
gradient fr/r=(Hθ−Er)/r=−2ρz/N0, that is excited by d=4.7
long wide bunch with density α0=0.2.

Figure 1: The gradient of dimensionless focusing field as
a function of longitudinal coordinate. The bunch is d=4.7
long, and α0=0.2, δ=0.2α0, γ=(1−β2)-1/2=10.

   It was shown numerically based on Eq. (8) that
although the amplitude of excited transverse components
is small, their wavelength is nearly equal to that of one-
dimensional nonlinear wave. The amplitude of
oscillations periodically changes with z (see Fig. 1). The
modulation depth grows and the modulation period
decreases as the amplitude of nonlinear longitudinal
oscillations increases. These effects take place also for
other components of the field.

4  WAKEFIELD IN UNIFORM PLASMA
Eqs. (1)−(6) were solved numerically choosing the
Gaussian profile of the bunch both in longitudinal and
transverse directions:

α α σ σ= − − −0
2 2 2 2

0exp[ ( ) / ]exp( / ).z z rz r   (9)

In case of small amplitudes of the excited wake wave
(when α0<<1) the numerical solutions well agreed with
linear theory predictions. Shown in Fig. 2 is the
nonlinear 2D plasma wake wave excited in uniform
plasma by the relativistic electron bunch with parameters
α0=0.4, σz=2, σr=5 (for example, in this case
nb0=4×1013cm-3 and the characteristic longitudinal and
transverse sizes of the bunch σz,r/kp respectively are
1.06mm and 2.65mm when np=1014cm-3). The main
difference here from the linear case is the change of
shape and length of the wave with the radial coordinate
r, as well as the change of amplitude in the longitudinal

Figure 2: The two-dimensional nonlinear wake wave in
uniform plasma. The parameters of the bunch are:
α0=0.4, σz=2, σr=5, γ=10. (a). The longitudinal electric
field. 1−r=0; 2−r=4; 3−r=6; 4−the density of bunch at
the axis α(z, r=0). The focusing field fr=Hθ−Er (b) and
magnetic field strength (c). 1−r=2; 2−r=4; 3−r=6.

direction. Note also an enlargement of the range of
focusing forces (fr<0) in the nonlinear wake wave.
   It is easy to see that due to the dependence of the
wavelength on r, the field in the radial direction grows
more chaotic as the distance from the bunch increases. In
fact, the oscillations of plasma for different r are
“started” in the wake wave with nearly equal phases but
different wavelengths. As |z| increases, the change of
phase in the transverse direction (for fixed z) becomes
more and more marked. This leads to a curving of the
phase front and to “oscillations” in the transverse
direction. Curve 1 in Fig. 3 shows the radial behavior of
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the accelerating field Ez in the nonlinear wake wave.
Qualitatively, the radial dependence of the field differs
from that of the linear case by the change of sign and
“steepening” of fields along r (see also Ref. [2]). One
can determine the longitudinal space parameter
characterizing the wave front curving as follows:

ξ λ λ= −p p/ [ ( / ( ))],2 1 0Λ                 (10)

where Λ(r) is the nonlinear wavelength. At the distance
|∆z|≈ξ from the bunch the oscillation phase at the axis
(r=0) is opposite to that on the periphery (r≥σr) where
the wave is nearly linear.

Figure 3: The radial behavior of accelerating electric
field strength Ez. 1−Ez(z=−25, r) in the nonlinear wake
wave excited in uniform plasma for the case given in
Fig.2 (|∆z|≈ξ [see Eq. (10)]); 2−Ez(z=−25, r) in
nonuniform plasma for the case given in Fig. 4.

  The magnetic field strength in the nonlinear two-
dimensional wake wave as shown in Fig. 2(c) is different
from zero (note that in the linear case Hθ=0 in the wake,
where the wave is potential) due to the fact that the
velocities of plasma electrons in the wave are not any
more small in comparison with the bunch velocity. The
magnitude of higher frequency oscillations (as compared
to the plasma frequency) performed by the magnetic
field along z grows in proportion to the nonlinearity.
Such a behavior of magnetic field is a purely nonlinear
effect. The nonlinearity of the wave implies a rise of
higher harmonics in Pz and Pr. According to (7), the rise
of magnetic field is due to these harmonics and this
accounts for frequent oscillations seen in Fig. 2(c). On
the other hand, according to (7), the non-zero magnetic
field in the wake means that the motion of plasma
electrons in the nonlinear wave is turbulent (rotP≠0).
The degree of turbulence (the measure of which is Hθ)
grows as the nonlinearity.
   From the viewpoint of acceleration and focusing of
charged bunches in the wave, the curvature of the
nonlinear wave front is undesired as the quality
(emittance, monochromaticity) of the driven bunch
worsens. Below we show that in radially-nonuniform
plasma one can avoid the curvature of the wave front.

5  RADIALLY-NONUNIFORM PLASMA
Thus, in two-dimensional nonlinear regime the nonlinear
wavelength changes with r due to nonlinear increase of
the wavelength with wave amplitude. On the other hand,
the linear wavelength λp∼np

-1/2 decreases with density of
plasma. Let us assume that the nonlinear wavelength of
the two-dimensional wake wave in the uniform plasma
Λ(r) is known. Then, one can roughly compensate for
the radial variation of the nonlinear wavelength by
changing the unperturbed density of plasma in the radial
direction according to the relation

Λ Λ( ) / ( ) ( ) / ( ) [ ( )/ ( )] ./0 0 0 1 2r r n n rp p p p= =λ λ  (11)

If we put the function Λ(r) to be Gaussian (according to
numerical data for profiles (9), this is approximately the
case at least for r<σr), then one can take the transverse
profile of the unperturbed plasma density to be also
Gaussian: np(r)= np0 exp(−r2/σp

2). It follows from Eq. (11)
that in this case σp=r/[ln(Λ(0)/Λ(r))]1/2. For example, the
numerical data for Λ(r) in the nonlinear wave shown in
Fig. 2 give σp≈11. Fig. 4 illustrates the validity of this
assertion (see also Fig. 3, curve 2).
   Numerical solutions obtained for the case of nonlinear
wake wave excitation by a short laser pulse (Laser
Wakefield Accelerator, see e. g. Ref. [1]) show that the
results given in this work do not change qualitatively.

Figure 4: Accelerating electric field of two-dimensional
nonlinear wake wave in nonuniform plasma with σp=11
for r=0, 2, 4 and 5 in the order of magnitude reduction.
The bunch parameters are the same as those in Fig. 2.
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