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Abstract similar to that used by Anderson and Bonnedal in their

. . e study of self-focusing [9], and extend the variational
The attractiveness of variational principle approaches ffgchnique to a coupled set of equations so as to include
obtaining good approximations to complicated problems, man related instabilities.

is well established. Motivated by this fact, we have
developed a variational principle approach to the \yo start with the two coupled equations for the

evolution qf short-pqlse laser-plasma accelerator driver&ensity perturbation and normalized vector potential,
We start with an action of the foray; a << ko a where |41 in the weakly relativistic regimé’<<1:

the Euler-Lagrange equations of L, the Lagrangian_,

density, give the well established coupled equations @ -¢?0%)a = 4mc Jg = —wf, B
short-pulse interactions, in the weakly relativistic ot2 NoYy
regime: 2
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We substitute appropriate trial functions for a gitito  where 6n = (n-n)/n,, Then, we normalizing all time

S and carry out thfelx; integration. The Euler-Lagrange dimensions tcwp'l, space dimensions tcg‘lkz Cclw,, and

equations of the reduced Lagrangian density providaake a coordinate transformation to the normalized light

coupled equations for the trial function parameters, i.drame variables{ = t - z, 7 = z). Upon making the

spot sizes, amplitude, phase, radius of curvature asdbstitution 2 —» a exp[lky], switching to the potential

centroids for botha and@ We present an analysis ing = 6n 4474, making the envelope approximation

the paraxial regime, where thgd, a term is neglected. d,a<<kg, noting thata is unidirectional and describable
by a single scalar, and dropping derivatives|«ff as

1 MOTIVATION slow, we arrive at the well known set of equations:

_ Understanding the evolution of short-pulse high;2 —Zi—Ziko i)a: 1-g)a

intensity lasers as they propagate through underdense oYot ot

plasmas is essential for the successful development of_, 2

some plasma accelerator [1] and radiation schemes | La_ +1g= ﬂ

Research during the past few years has resulted in 3@2

identification of numerous instabilities such as envelope

self-modulation [3], where the spot size of the laser

becomes unstable, and hosing [4, 5], where the centroid 2 THE VARIATIONAL APPROACH

of the laser becomes unstable. To study these

instabilities, it is desirable to obtain differential Our approach to the analysis of these equations is to
equations for the evolution of the macroscopic quantitidi§st obtain a Lagrangian density for the coupled
that characterize the beam profile, such as the spot sigguations. Then, we choose trial functions &andg
amplitude, phase, radius of curvature and centroi¢hich contain descriptive parameters that depend upon
There are various methods of Obtaining such equatio[ﬁ&{, T). We substitute these trial functions into the aCtion,
which include the variational method, as well as mome@nd perform the integration across the transverse
methods [6, 7], and the Source Dependent Expansigﬁordinates to obtain a reduced Lagrangian density. In
technique [8]. Here, we use a variational approadﬁis reduced form of the action integral, the parameters
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of the trial function represent a new set of dependent ( 2)
variables. In essence, by choosing an approximate form- (M Oy <1>)2 L
for the transverse beam profile, we replace the infinite
degrees of freedom in the transverse directions with
finite number which represent the macroscopic
characteristics of the distribution. Then, varying the
action with respect to the new dependent variables ylelquX<0 (awWyco) ) + P2 ( Wy 0y Xq))
a set of differential equations for the trial parameters. Wy Wy

We now carry out this procedure. We start by noting ,,
that the Lagrangian density for this set of equations is: + —2 Oy yq,)z)

Wyg

0y (WygWyg)

Wxe

L= DOpapal -ikg@a,all - alh, a)
-(@yadal+o,alh.a) -2(0,0)?

+29% - (-4’

Varying the action with respect tg, «,, a,, k, and k
yields the equations:

dx: 0;P =0 (PowerConservatin),

where the corresponding action = [dxgdydr L. da,: a, = _k_o aT(W)%a),
. . . . 4

It can be readily verified that our starting equations are K

the result of varying the action with respecuta, and day: ay = _0 9, (Wia)

0. We choose the following trial functions for

a,and @: Oky : Ky =-ko0rXy,

a=AW,1) ol KxW.T) % ei ky(@,T) Ya 5ky : ky =-kop0;Ya

~2 52
-@-iayw,1) -(1 —iay(y,n) Ya 5 We can use these equations to eliminate,, «,, k,, and
x e Xa(‘l’ 0’ Wya1) k, from the Lagrangian sincey is an ignorable
coordinate, and the other equations are generated by
%2 72 variations of the action with respect to the same
WD) w1 variables being solved for. Eliminating these variables
p=0Y,1)e e i yields the following simplified form of the Lagrangian:
whereXa = X = XaW,1), Ya =Y - Ya@.D), 1 kd
Rp =X~ XD, Vo =y Yp(th1), and the L= Pl ) =g (Orwa)” + Qrwya)”
14 QN ) Y Q\NTHE xa ya

amplitude A is a complex amplitude such that

AW, 1) = JEW, 1) € X¥ D) Inserting these trial

functions into the action and performing fde-
integration yields the following reduced action principle:
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+% (P+ Wy, Wy, D) +W—yq) @y Wyp)?)
L am%)? (Yam Yy Wy
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~ Wy Wy dPe N Wygp
> > In thls form, P is treated explicitly as a constant.
\/(Wxa +WX<0)(W +Wy<0) Variation of this Lagrangian with respect to the

remaining parameters yields the desired set of
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differential equations for their evolution.

beam profile.

3 SYMMETRIC ENVELOPE SELF
MODULATION AND SELF-FOCUSING

To demonstrate the utility of this approach, we no

look at the specific case of the symmetric envelope S%Iﬁvelope self modulation

erator Conference, New Y ork, 1999

TheseThe first two of these equations show tidgtand w;,
equations can then be used to study the stability of tbehave as

coupled harmonic oscillators, which
resonantly drive each other, and result in an envelope
self-modulation instability.

A more general stability analysis can be done in
which the centroids are allowed to evolve, and the spot
sizes are allowed to be different in the x and y directions.
This more general analysis results in 2 more instabilities:
a hosing instability [4, 5, 11], wherein the centroidsdor
‘3(nd¢5 resonantly drive each other, and an anti-symmetric
instability, wherein the

modulation instability [3]. Here, we are only interesteqnq 1,64 spot size variables in the x and y directions,
in the evolution of the spot sizes, with the x and Yor botha and¢, are equal and opposite (as opposed to

dimensions identical, i.e. W = W, =W, W4, = W, =
w,.  Making these replacements, setting the centroids
0, and then varying the resulting action with respect

the remaining parameter®; w, w, - yields:
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If we reduce these equations to the limit of #o
dependence, we obtain the self-focusing equations:

W= w P _A
o a2 4
4 P
92w, — 1-—) =0

From which we obtain the well known critical threshold

for self-focusing, P/R = a,’w /32 [9, 10]. For P = P,
we have a matched, stationary beam profile, i.eisa
constant.

We now examine the stability of this equilibrium[

the symmetric case previously analyzed, where the x and
é;spot sizes are identically equal). A comprehensive

alysis of these instabilities has been performed, and
will be described in future work.

4 SUMMARY

We have developed a variational principle approach
for studying the evolution of short-pulse laser-plasma
accelerator drivers. The approach is shown to reproduce
previous results, e.g., relativistic self-focusing and spot
size self-modulation. It is also useful for describing
instabilities such as asymmetric self-focusing,
asymmetric spot size self-modulation, as well as new
long-wavelength regimes for hosing and spot-size self-
modulation. We are currently extending the analysis to
fully non-linear driver amplitudes.
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