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Abstract

The attractiveness of variational principle approaches for
obtaining good approximations to complicated problems
is well established. Motivated by this fact, we have
developed a variational principle approach to the
evolution of short-pulse laser-plasma accelerator drivers.
We start with an action of the form aka 0<<∂τ  where
the Euler-Lagrange equations of L, the Lagrangian
density, give the well established coupled equations of
short-pulse interactions, in the weakly relativistic
regime:
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We substitute appropriate trial functions for a and φ into
S and carry out the ∫dx⊥ integration.  The Euler-Lagrange
equations of the reduced Lagrangian density provide
coupled equations for the trial function parameters, i.e.,
spot sizes, amplitude, phase, radius of curvature and
centroids for both a  and φ.  We present an analysis in
the paraxial regime, where the �\�W H  term is neglected.

1  MOTIVATION
Understanding the evolution of short-pulse high-

intensity lasers as they propagate through underdense
plasmas is essential for the successful development of
some plasma accelerator [1] and radiation schemes [2].
Research during the past few years has resulted in the
identification of numerous instabilities such as envelope
self-modulation [3], where the spot size of the laser
becomes unstable, and hosing [4, 5], where the centroid
of the laser becomes unstable. To study these
instabilities, it is desirable to obtain differential
equations for the evolution of the macroscopic quantities
that characterize the beam profile, such as the spot size,
amplitude, phase, radius of curvature and centroid.
There are various methods of obtaining such equations,
which include the variational method, as well as moment
methods [6, 7], and the Source Dependent Expansion
technique [8].  Here, we use a variational approach

similar to that used by Anderson and Bonnedal in their
study of self-focusing [9], and extend the variational
technique to a coupled set of equations so as to include
Raman related instabilities.

We start with the two coupled equations for the
density perturbation and normalized vector potential,
valid in the weakly relativistic regime, _H_

2<<1:

a
a

n

a
n

n
Jcac

t

p

p

&

&

&

&

)
2

1(

4)(

2
2

0

222
2

2

−+−=

−==∇−
∂

∂
⊥

δω

γ
ωπ

2
)(

2
222

2

2 a
cn

t
p ∇=+

∂

∂ δω

where Gn � (n-n0)/n0.  Then, we normalizing all time
dimensions toZp

-1, space dimensions to kp

-1
� c/Zp, and

make a coordinate transformation to the normalized light
frame variables (\ � t ¡ z, W � z).  Upon making the
substitution  H � H exp[Ik0\], switching to the potential
I � Gn -_H_2/4, making the envelope approximation
�WH<<k0H, noting that a

&

 is unidirectional and describable
by a single scalar, and dropping derivatives of _H_

2 as
slow, we arrive at the well known set of equations:
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2  THE VARIATIONAL APPROACH
Our approach to  the analysis of these equations is to

first obtain a Lagrangian density for the coupled
equations.  Then, we choose trial functions for φanda
which contain descriptive parameters that depend upon
(ψ, τ).  We substitute these trial functions into the action,
and perform the integration across the transverse
coordinates to obtain a reduced Lagrangian density.  In
this reduced form of the action integral, the parameters

______________________________________________

0-7803-5573-3/99/$10.00@1999 IEEE. 3669

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999



of the trial function represent a new set of dependent
variables.  In essence, by choosing an approximate form
for the transverse beam profile, we replace the infinite
degrees of freedom in the transverse directions with a
finite number which represent the macroscopic
characteristics of the distribution.  Then, varying the
action with respect to the new dependent variables yields
a set of differential equations for the trial parameters.

We now carry out this procedure.  We start by noting
that the Lagrangian density for this set of equations is:
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where the corresponding action is L  d ddxS ∫= ⊥ τψ .

It can be readily verified that our starting equations are
the result of varying the action with respect to H, H*, and
I.   We choose the following trial functions for

φ  and , a :
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where   ,(~ ),xxx aa τψ−≡  ,(~ ),yyy aa τψ−≡
   ,(~ ),xxx τψφφ −≡ ),yyy τψφφ (~ −≡ , and the

amplitude A is a complex amplitude such that
),(  ),(),( τψχτψξτψ ieA = .  Inserting these trial

functions into the action and performing the ∫dx⊥

integration yields the following reduced action principle:
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Varying the action with respect to  F, Dx, Dy, kx, and ky
yields the equations:
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We can use these equations to eliminate F, Dx, Dy, kx, and
ky from the Lagrangian since F is an ignorable
coordinate, and the other equations are generated by
variations of the action with respect to the same
variables being solved for.  Eliminating these variables
yields the following simplified form of the Lagrangian:
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In this form, P is treated explicitly as a constant.
     Variation of this Lagrangian with respect to the
remaining parameters yields the desired set of
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differential equations for their evolution.  These
equations can then be used to study the stability of the
beam profile.

3  SYMMETRIC ENVELOPE SELF
MODULATION AND SELF-FOCUSING

     To demonstrate the utility of this approach, we now
look at the specific case of the symmetric envelope self
modulation instability [3].  Here, we are only interested
in the evolution of the spot sizes, with the x and y
dimensions identical, i.e. wxa  = wya � wa, wxI  = wyI �
wI.  Making these replacements, setting the centroids to
0, and then varying the resulting action with respect to
the remaining parameters - ), wa, wI - yields:
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If we reduce these equations to the limit of no \

dependence, we obtain the self-focusing equations:
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From which we obtain the well known critical threshold
for self-focusing, P/Pcrit = H0

2wa

2/32 [9, 10].  For P = Pcrit,
we have a  matched, stationary beam profile, i.e., wa is a
constant.
     We now examine the stability of this equilibrium
solution.  Linearizing the equations using a matched
beam as the 0th order solution yields:
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The first two of these equations show that )1 and wa1

behave as coupled harmonic oscillators, which
resonantly drive each other, and result in an envelope
self-modulation instability.
     A more general stability analysis can be done in
which the centroids are allowed to evolve, and the spot
sizes are allowed to be different in the x and y directions.
This more general analysis results in 2 more instabilities:
a hosing instability [4, 5, 11], wherein the centroids for H

and I resonantly drive each other, and an anti-symmetric
envelope self modulation instability, wherein the
linearized spot size variables in the x and y directions,
for both H and I, are equal and opposite (as opposed to
the symmetric case previously analyzed, where the x and
y spot sizes are identically equal).  A comprehensive
analysis of these instabilities has been performed, and
will be described in future work.

4  SUMMARY

     We have developed a variational principle approach
for studying the evolution of short-pulse laser-plasma
accelerator drivers.  The approach is shown to reproduce
previous results, e.g., relativistic self-focusing and spot
size self-modulation.  It is also useful for describing
instabilities such as asymmetric self-focusing,
asymmetric spot size self-modulation, as well as new
long-wavelength regimes for hosing and spot-size self-
modulation. We are currently extending the analysis to
fully non-linear driver amplitudes.
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