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Abstract

In the equivalent circuit model for the DDS originally
presented no losses were explicitly included in the cell
circuits or the manifold circuits.  Damping via the
manifolds was effected by imposing matching conditions
(including the possibility of reflection) on the ends of the
manifolds.  In this paper we extend the circuit theory to
include lossy circuit elements.  We discuss and compare
shunt conductance and series resistance models for the
cells. Manifold damping is modeled by introducing a
shunt conductance per unit length in the transmission line
elements of the manifolds.  We apply the theory to the
mitigation of performance degradation associated with
fabricationally desireable decoupling of several cells at the
ends of the structure from the manifolds.

1 INTRODUCTION

The SLAC DDS acronym refers to detuned accelerator
structures in which the transverse wake field is controlled
by detuning for proximate bunches and weak damping for
remote bunches [1].  The damping is provided by four
damping manifolds, waveguide like structures aligned
symmetrically along the length of the structure, which
drain dipole mode energy into external loads at both ends
of the manifolds.  In the original equivalent circuit studies,
the manifolds were coupled to every structure cell  and the
manifold loads were matched. Furthermore, the
equivalent circuit model [2] included no losses other than
those resulting from the external manifold loads.
Performance assessments have, however, always taken
copper losses into account phenomenologically by
multiplying computed wake functions by a decaying
exponential with an appropriate damping time
characteristic for each structure type, corresponding
roughly to a Q of 6500 at 15 GHz (181 ns).

Subsequently the effect of manifold mismatch and the
effect of decoupling a few cells from the manifolds have
received a great deal of attention.  Even quite small
manifold mismatch leads to significant degradation of the
transverse wake function [3,4].  Decoupling a few cells
from the manifolds at the downstream end of the structure
gives rise to a few modes with relatively high Q and large
kick factors [5], which also leads to significant
degradation.  It is expected that both of these effects can

be ameliorated by the addition of resistive damping to the
equivalent circuit model.  Adding resistive attenuation to
the manifolds is likely to reduce the effect of termination
mismatch, while individually damping the downstream
cells not connected to the manifold is expected to reduce
the Q of the modes discussed in [5].    In the following
sections we first discuss equivalent circuit models which
include cell damping and obtain the modified equivalent
circuit expressions for the wake impedance defined in [6].
The wake function itself is then obtained by Fourier
transforming the wake impedance without employing any
direct appeal to contour modification or to analytic
properties. This is followed by applications of the theory
to uniform cell damping, intended to replace the
phenominological model of copper losses mentioned
above, and to the effect of damping the downstream cells
not connected to the manifold.  The effect of manifold
attenuation will be discussed in a future publication.

2  CIRCUIT MODELS OF DAMPING
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Figure 1: Circuit diagram indicating shunt loading

We describe and compare two circuit models of cell
damping which we refer to as the series resistance model
and the shunt conductance model. In the former,
resistances of arbitrary magnitude are inserted in series
with the cell loop inductances (see [2], especially Fig. 1),
while in the latter, conductances are shunted across the
cell loop capacitances. The impedance and inductance in
Fig. 1 are given by:
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where L, R, G, and C are diagonal 2Nx2N matrices (N
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being the number of accelerator cells), M is the mutual
coupling matrix and it has no diagonal elements, Zm is the
manifold impedance matrix.  Furthermore, all the matrices
are symmetric. In the series resistance model G = 0 and
for the shunt conductance model R =0.

The impedance presented to the terminals may be written:
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We write Zl because the circuit shown in Fig 1 represents
the longitudinal impedance.  Because Y2 and Z1 do not
commute the order of factors in the above eqn. is
significant.  The second form, with the dimension-less
quantity Y Z Y2 1 2  is well-suited to expression in terms

of our standard scaled variables.  The transverse
impedance, obtained from the above by application of the
Panofsky Wentzel theorem in the usual way leads to an
expression analogous to eqn. 5 of  [6] with the expression

H f H1 2 1
−

−3 8  which appears there replaced in the series

resistance case by:

H f HQ Q1 2 1
−

−3 8 (2.3)

with

H H j f fQ Q Q L R f L RQ R= − = = =−
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in the shunt resistance case by:
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where:

U jf fQ Q C GG G= − =1 0 0/ , /1 6 ω (2.6)

with the approximation
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− −
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Comparing the series resistance and shunt conductance
expressions with equal Q matrices, we see that the
denominator matrix is the same in the two cases.  For the
series case, however, the numerator matrix contains a
term j/(ff0Q) which has a pole at f = 0 and gives a non
vanishing (and non physical) contribution to the wake
function at infinite s.  In the applications carried out so far
this effect of this term has been suppressed be restricting
the domain of integration, but in future work the shunt
conductance model will be used.  We propose to add
manifold attenuation to the equivalent circuit model by

adding attenuation to the manifold waveguide sections.

3  EVALUATING THE WAKE FUNCTION
In reference [6] we computed the (causal) wake function
from:

W s s S f s c f dfc ( ) ( ) ( )sin[( / ) ]=
∞Iθ π2
0

(3.1)

where S(f) = -4Im{Z(f-jε)}.  We recall some well known
relations to  argue that the same expression is appropriate
here.

Because W is real, Re{Z(f-jε)}=Re{Z(-f-jε)}, and
Im{Z(f-jε)}= -Im{Z(-f-jε)}
and thus:

W s df Z s f j Z s f jr i( ) cos sin= − − −
∞I2 2 2
0

π ε π ε1 6 1 6= B
(3.2)

Define:

W s s dfZ s f jc i( ) ( ) sin= − −
∞I4 2
0

θ π ε1 6 (3.3)

where Z=Im{Z} and Zr=Re{Z}.  If W vanished for
negative s as it is physically required to do, we would
have W = Wc.   For then the cos integral must equal minus
the sin integral.  As has been noted before the equivalent
circuit model has a non physical precursor so that the
equality of the two terms is only approximate at small s.
Physically, however, W must vanish both for negative s
and at s = 0, so we consider Wc to be a better
representation of the wake function than W.  While this
argument might lead one to conclude that it would be
equally justified to use the cos integral, the sin integral is
superior both because it vanishes at s = 0 and because it is
easier to evaluate numerically. Practically speaking
infinite integration ranges must always be replaced by
finite ones, and generally speaking Im{Z}  (in contrast to
Re{Z}) can be neglected outside the structure pass bands.
If one ignores the fact that this argument fails near f = 0
for the series resistance case and confines the integration
to the structure pass bands, the two models should give
very similar results.

4  APPLICATIONS
The primary impetus of this work was to determine

whether the deleterious effect of decoupling the last few
downstream cells could be countered by damping these
cells and to obtain quantitative information on how much
damping would be required. In our previous analysis there
were no losses in the circuit model, and we included
Ohmic cell losses by including a decay constant after the
taking the Fourier transform of the spectral function.
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Figure 2: Spectral  function for four cells decoupled from
the manifold of RDDS1 and all loaded with a cell Q of
6500.  Also shown is the smoothed undamped spectral
function (indicated by dots).

However, in Fig. 2 the spectral function is calculated
including Ohmic cell losses for both the TE and TM mode
in all 206 cells.   For our  previous phenomenological
model to have been a faithful representation of damping,
the wake computed by both models should be quite
similar and, the resulting wake shown in Fig. 3 reveals
that the only noticeable difference in the wake is due to a
slightly different sampling used in the the two Fourier
transforms in the two methods.  This gives us confidence
in the reliablility of the method and, we calculate the
effect of damping the last four and first four cells of the
structure with a Q of 1000  (corresponding to the original
design of an manifold-cell Q of 1000), and all other cells
have purely copper losses.
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Figure 3: Wake  function for four cells decoupled from the
manifold of RDDS and all loaded with a cell Q of 6500,
corresponding to all cells being loaded down with copper
losses at room temperature.   The bunches are spaced at
2.8ns and they are indicated by dots.

The spectral function for this situation, shown in Fig 4.,
has oscillations in the upper frequency end with
considerably reduced  amplitude compared with those in
Fig. 2.   Indeed, on computing the modal Q we find that
the Q for the last 5 resonances ranges from approximately
1200 to 1500, as compared with a Q range of  3,000 to
12,800 for the situation in Fig 2.  Thus the wakefield,

illustrated in Fig. 5, is considerably improved in the region
greater than 5m or so, in the the neighbourhood of the
recoherance peak (about 30m or so), and thereafter.
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Figure 4: Spectral  function for four cells decoupled from
the manifold of RDDS and all are loaded with a cell Q of
6500, apart from the last four and the first four cells which
are given Q of 1000.
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Figure 5: Wake function for four cells decoupled from the
manifold of RDDS and all are loaded with a cell Q of
6500, apart from the last four and the first four cells which
are given Q of 1000  Shown inset is the wakefield for the
first 2m.
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