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Abstract

We investigate the interaction and the coupling of  TM01

and HEM11L, with an electron beam in a high-efficiency
traveling-wave output structure operating at 9GHz. The
coupling between the symmetric and asymmetric mode
may be characterized by a single parameter that represents
the correlation of the transverse and longitudinal phase-
spaces. In order to examine the coupling we consider a
pre-bunched beam injected in a uniform structure. For a
specific set of parameters simulations indicate that
0.5MW of HEM11L power at the input is sufficient to
deflect to the wall a beam of 300A/0.85MV guided by a
0.5T magnetic field.

1  INTRODUCTION
In high-power and high-efficiency traveling-wave

amplifiers the electron beam is assumed to interact with
the lowest symmetric TM mode. Efficiencies as high as
70% and even higher, may be achieved in coupled cavity
TW structures when high order modes do not play a
significant role. However, asymmetry may occur either
due to the input or output arm or azimuthal electrons’
distribution. As a result, asymmetric modes may develop.
Such modes are called hybrid electric and magnetic
(HEM) modes. The main problem with HEM modes, is
their ability to deflect the beam to the wall. Since pulse
shortening was observed experimentally, as reported by
Wang et. al. [1], we investigate in this study, some of the
“cold” characteristics of asymmetric modes, and their
interaction with the electron beam and the symmetric
mode; specifically the beam blow up due to the hybrid
mode. 

2  DISPERSION RELATION
 In the internal region (r < Rint) of a disk-loaded structure

all the components of the electromagnetic field may be
derived from the longitudinal components:
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)(ξνI  is the modified Bessel function of the first type and

order ν . The  dispersion  relation  of  a  periodic structure
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 may be written in a matrix form as follows:
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 where, in principle, the matrices DTM, DTE, C12, C21, are
infinite. This notation is convenient since in the case of
symmetric modes )0( =ν the coupling matrices (C12,C21)

are identically zero and this equation has two uncoupled
solutions Det (DTM) = 0 and Det (DTE) = 0 that represent all
the symmetric transverse magnetic (TM) and transverse
electric (TE) modes, respectively. For any other value of
ν  the coupling matrices are not zero and as a result, the
non-trivial solution of (2) implies that each  eigen-mode is
a superposition of the two modes (TE & TM). From the
perspective of the interaction with the electrons, the main
problem with such a mode is that it has a non-zero
transverse magnetic field on axis and consequently,
electrons may be deflected [2-5].

 Similar to the symmetric modes for each radial number
ν  there are two modes, only that here we can no longer
distinguish between TE and TM but rather they are
referred to as “lower” and “higher” modes. Figure 1
illustrates the dispersion relation of all the modes up to
20GHz in a structure with internal radius of 8mm. The
structure was designed to operate at 9GHz with phase
advance per cell of 2/π and phase velocity of 0.933c; the
disk thickness is 1.5mm. In such a relatively small internal
radius the TM01 and HEM11L modes are well separated and
do not intersect. For higher radii the modes get closer to
each other.

 
 
 
 
 
 
 
 
 

 

 

 Figure 1: All modes up to 20GHz; a-TM01, b-HEM11L, c-
HEM11H, d-HEM21L, e-HEM21H, f-TM02.
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 The relative weight of each basic mode (TM and TE)
composing the hybrid mode changes at different
frequencies. In order to illustrate the “character” of the
HEM mode, it is convenient to define the quantity

|/| 0000 === nnh EHη . When h0 is smaller than unity, the
system behaves as a “TM” mode whereas values larger
than unity its behavior resembles the “TE” mode. Figure 2
illustrates the value  h0  for the same structure presented
above. The “TE” behavior is primarily in the lower part of
the pass band of HEM11L and “TM” behavior in its upper
region.

 
 
 
 
 
 
 
 
 
 

 
 
 Figure 2: The value  h0   for  HEM11L as presented in
Figure 1.

 
 Another aspect that is critical in the design of a slow-

wave structure is the group velocity of the HEM11L mode.
If the latter is negative an inherent positive feedback
develops in the system and the system will oscillate. This
problem is in particular vital in tapered structures where
even if initially the system was designed for a positive
group velocity, as the phase velocity of TM01 mode is
reduced, the group velocity of the HEM11L may become
negative. Increasing the internal radius eliminates the
positive feedback but it also reduces the interaction
impedance; the latter is defined as:
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 where SW is the area the wave propagates and P is the total
power which flows in the system in the mode.

 3  DYNAMICS OF THE SYSTEM
 In order to describe the coupling between TM01 and

HEM11 we developed a quasi-analytic macro-particle
model that describes the interaction of a beam of electrons
with both TM01 and the low branch of the HEM11. In the
framework of this approach the dynamics of the particles
is fully 3D but the variations effect in the amplitude of the
electromagnetic field are assumed to occur only in the
longitudinal direction (1D). Additional assumptions of the

model include; positive group velocity of both modes, the
basic form of both modes is preserved, the energy
conversion is controlled by the longitudinal motion and no
electrons are reflected. Space limitations will constrain the
explicit formulation to the 1D case however subsequently
simulation results from a 3D simulations will be
presented. In the case of 1D motion the mode coupling is
only  due to azimuthal asymmetry therefore the governing
equations read:
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 The first two are amplitude dynamics equations, followed
by the phase dynamics equations and in the last line we
have a single particle energy conservation; 1 represents
the TM01 mode and  2 the HEM11L mode; 

K
 represents

averaging over entire ensemble of particles. The other
definitions used here are: dz /≡ξ , d is the total

interaction length,   ,/,,/ 2
0 mcdeakdKcd n=≡≡≡ EωΩ

1,
2/121  ,)1( ii χβγ −=−  is the phase of the i’th particle

relative to the TM01 mode whereas 2,iχ  is the phase of the

same particle relative to the HEM11L mode; iφ  is the

azimuthal location of the i’th  particle; 21 ,αα are the

coupling coefficients defined as

2,1  ),/)(/( 2
int

22
int =≡ µπα µ

µ RdmceIZ ; intRΓΓ ≡  and

int/ Rrr ≡ . Based on (4) the spatial growth of the system

may be evaluated and the result is:
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 and the real parameter describing the coupling between
the modes u is given by:
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 The solution S+ corresponds to the “HEM11L”-like solution
since at the limit 0=u , S+=S2 whereas S- corresponds
to   the    “TM01”-like   solution. Figure   3 illustrates the
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value of u  as a function of the angular   spread of the
beam     00 φφφ <<−    with  other  parameters  chosen as

 follows:    ,2/2/  ,5.4  ,3 1,21 πχπΓΓ <<−== i    ,1.5 i,1i,2 χχ =
 6.00 << ir and 5.24.2 << ii βγ . It shows that the

coupling is maximum when the azimuthal spread of
particles is minimal and evidently in the case of a
symmetric beam the coupling vanishes.

 Figure 3: The value of u as a function of the angular
distribution of the beam.
 

 Finally, the 3D approach that due to space limitations
will not be described her, enables to examine the
development of the beam expansion. Figure 4 shows the
radius of the envelope, rRRe 2/ int ≡ , for several initial

HEM11L  power levels at the input
(1,10,100,500,1000kW); the TM01 mode is generated by a
modulated 4/|| 1, πχ <i  beam. The other parameters of

the simulation are as follows: I=300A, V=0.85MV,
Rint=8mm, Rb=3mm, d=3.11cm, |h0|=0.94,
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 Figure 4: The radius of the envelope for several HEM11L

power level at the input (kW).
 

 The increase of beam’s envelope is directly correlated
with the efficiency of HEM11L mode as illustrated in
Figure 5. At the same time, the interaction of the TM01 is
very efficient reaching the 80% level due to initially
bunched beam that drives the system. This efficiency is
virtually not affected by the HEM11L mode and all the
curves overlap. The efficiencies of the TM01 and HEM11L

modes are defined as follows:
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 For MW5.0P )HEM(

in
L11 =  there are particles that hit the

structure and for this reason the interaction is terminated.
 
 
 
 
 
 
 
 
 
 
 

 Figure 5: The way the efficiency of both modes develops
for several  HEM11L power levels at the input (kW).

 3  CONCLUSIONS
 The design of a slow wave traveling wave structure has

to take into consideration the effect of the asymmetric
modes that the beam may interact with; the coupling
between the symmetric and asymmetric modes was shown
to be determined by a single parameter. When substantial
power is associated with the HEM11L mode it may cause
deflection of the beam to the wall.
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