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Abstract

Resonance far-field structures capable to provide high
gradient continuos acceleration at millimeter and micron
wavelengths are considered. Among such structures are
periodically striped open waveguide and oversized
waveguide having periodic small perturbations. Main
parameters of the structure composed by flat mirrors are
estimated on the base of rigorous analytical solution for
the eigenmodes.

Some modifications of diffraction-dominated structures
based on open waveguides and resonators are proposed.

1  INTRODUCTION
In the previous paper [1] a concept was proposed for laser
resonance acceleration of relativistic charged particles. It
is based on a resonance interaction of a straightforward
charged particle beam interacting with electromagnetic
beam having periodic change of wave vector. Closed
waveguide having periodical deformation was considered
as the accelerating structure. It was shown earlier, that
such an overmoded rectangular [2] or circular [3]
waveguide can be excited effectively (with dominant
single mode) by a properly focused laser beam having
linear polarization. However, the stability of the hybrid
EH11 mode to the transformation into parasitic higher
modes requires further consideration.

In this paper we consider another realization of the
principle above based on an open periodic waveguide. It
can provide stable propagation of the lowest mode due to
diffraction resulting in widely-spaced spectrum of
eigenmodes.

2  EIGENMODES OF THE PERIODICAL
OPEN MIRROR WAVEGUIDE

The open waveguide (or open periodical resonator)
composed by chain of mirrors with period λw. For
simplicity of consideration we assumed here rectangular
flat mirrors with dimensions 2a×2b. The principal scheme
is shown in the Fig. 1. To consider the fields of the open
mirror waveguide we solve first the problem for the
equivalent open resonator with rectangular mirrors having
dimensions 2a1×2b (see Fig. 2). The e.m. fields of the
resonator with rectangular mirrors are found by
Vainshtein [4] in terms of eigenmodes for Hertz vector

potential 
r
Π  at λs<<a,b, where λs=2πc/ω is laser

wavelength. The vector potential 
r
Π  is defined through

the potential function Φ, that satisfies to a Helmholtz

wave equation: ∆Φ Φ+ =N� � .
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Fig. 1. Schematic drawing of an accelerator with a
«wiggling» field propagating in an open mirror
waveguide.
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Fig. 2. Equivalent open resonator with rectangular
mirrors.

If the fields in the resonator are produced by plain
waves propagating with small angles to the axis OZ, the
fields of corresponding TE modes can be expressed in the
following form:
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, η=-ζ(-0.5)π-0.5≈0.824,
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, p=pa+pb ,ζ(z) is Riehmann’s

Zeta function.
To find the potential function for the waveguide it is

necessary to make a transition from the standing wave to
the traveling one, to make a transformation from local
frame xoz (see Fig. 2 corresponding to each half a period)
to the waveguide frame XOZ (Fig. 1) and to impose
Flouqet condition of periodicity. The transformation is
valid under the following conditions:

λs<<λw, πp’’<<1 and h1=h/sinϕ, a1=a sinϕ,              (2)
where p=p’-ip’’.
After Fourier expanding of the potential function on the

period λw one can derive:
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where kZ=(k-2kwp’cosϕ)cosϕ-ikw p’’, qw=0,1,2,3...,
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S(x)=sin(x)/x, kw=2π/λw.

3 BASIC RELATIONSHIPS
One can see from (3), that the Fourier coefficient &T

Z
is a

function of coordinate X due to wave front inclination.
With taking into account condition λs<<a,b the
dependency is weak at small glancing angles ϕ <<1:

(kZ’Xtgϕ)2<<1,  or  (ϕXk)2<<1               (4)
If the angle ϕ is small, substantial contribution in Φ

give the following terms: qw=0, qw=odd. We consider
below only resonance acceleration, i.e. qw=1,3,5,... .

Phase velocity related to the speed of light follows
simply from (3):
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Then for γ >>1 we have the following condition of
resonance:
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One can obtain from (5) for γ2ϕ2 >>1, ϕ <<1 and Ma,
Mb>>1:

λw/λs ≈ 2qw/ϕ
2      (6)

Note, that (6) is equivalent to analogous condition (2) in
[1] when ϕ →πrw√2/λw<<1. From (6) one can estimate the
tolerance on the most critical parameter ϕ: ∆ϕ/ϕ<<1/2qw.

For the practical situation, when a-λw/4<<a, we have
from (6) and (2) the following important rule:

Nfx=qw/2,
where Nfx=Ma

2/8π is the Fresnel number for XOZ plane.

If M a, Mb>>1 and waist of the incident laser beam is
matched with the mirror dimensions a1, b (analogously to
[2,3]), we can assume, that the dominant propagating
mode is m=1, n=1. Then the power flow through the
waveguide is:
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For the lowest dominant mode we obtain from (1,3) the
following expression for the accelerating field amplitude:
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the optimal transverse position for the particle beam
centroid.

In order to remove the details of the specific accelerator
mechanism let us define the coupling strength gc as the
ratio between the local acceleration gradient Ea and
vacuum electric field � � � �= 3 6� of the focused laser beam

(here S0 ≈ 4a1b). Under the conditions above we have from
(7,8):

J TF Z≈ �ϕ � =� �λ λ
V Z Z
T� .                    (9)

Note, for our scheme gc is equal approximately to Ea/Ee

defining the ratio between accelerating field and surface
field.

Power attenuation length Latt can be defined from (7)
provided ohmic losses are negligible:
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4 PERFORMANCE ESTIMATIONS
It is seen from (10), that power losses are proportional to
λw

-1qw

-3/2, whereas the coupling strength scales as
λw

-1qw

-1. Hence, to use the advantage of long resonance
acceleration we should choose higher harmonics.
However, as qw increases tolerances becomes more
stringent. Estimated performance parameters of the
scheme are presented in the Table 1 for a1≈b/3, a≈λw/4,
wavelength λs= 10µm and surface field Ee=5 GV/m.

5 DISCUSSION
Since the angle ϕ is small for short wavelengths, ohmic
losses of the TE modes can be considerably reduced with
the help of special corrugations made on the mirror
surface (having period ≤ λs/2 and depth (0.2÷0.5)λs ) or
proper dielectric coating (see [2,5]). Besides, the radiation
losses defined in (10) on the basis of diffraction in
resonator (Fig. 2) for waveguide are actually less due to
interference effect [4]. The diffraction losses can be
reduced further by enhancement of both the effect with
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proper choose of the relationships between λs, λw, a,ϕ and
figure of merit Q for single cell due to mirror curvature
optimization.

In general case input coupling can give a combination
of TE and TM mode [3].  Note, for the TM mode one can
derive from (3), that coupling strength is less (gc≈4ϕ2/qw)
and Xo =0. To solve this multi-mode problem further
study is necessary.

The main disadvantage of the scheme compared to an
Open Iris Loaded Waveguide (OILS, [6]) is dependence
of the acceleration rate on the particle transverse
coordinate (3). This imposes rather stringent condition for
the both particle beam radius and beam alignment
tolerance that practically should not exceed several
wavelengths (see (4)).

Table 1. Performance parameters for the rectangular
mirror waveguide.

qw 3 5
λw , cm 1.2 4
ϕ, mrad 70 50
2h, mm 0.43 1.0
gc 0.06 0.025
Ma 6.1 7.9
Latt, cm 12.2 80
Ie=P0/S0, W/cm2 4.5⋅1016 1.3⋅1017

P0, W 2.5⋅1010 4⋅1011

Rs, MΩ/m 0.6 0.12
Q 7.6⋅104 5⋅105

Ea, GeV/m 0.35 0.25

6 SOME VARIANTS
To reduce the diffraction losses limiting the acceleration
section length one can use cylindrical or spherical mirrors
(see Fig. 3).

mirror waveguide
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Fig. 3. Accelerating waveguide with reduced losses.

One can provide a resonance mechanism in OILW by
means of special sections, where the interaction between
particle beam and field is negligible (see Fig. 4). In this
sections the propagating mode is converted into A-mode
of spheroidal cavity [4]. In the scheme λw/2 lies between
Ls/2 and Ls (slippage length). An average acceleration rate
is less then that local value for OILW (up to twofold).

Ls

λ w

Fig. 4. Modified OILW to provide resonance acceleration.
Gray thick lines show flow of primary power.  Dotted
lines show caustics.

7 CONCLUSION
One can outline the following attractable features of the
acceleration scheme considered:
− Relative simplicity for manufacturing of the
waveguide composed by flat mirrors and suitability for
acceleration of flat beams.
− The final energy gain is limited by attenuation length
rather than slippage length, because it is resonance
acceleration.
− Tapering is not necessary to provide synchronism
between relativistic particles and accelerating harmonic.
− Axicon scheme is not required to couple the laser
power in the structure.
− Synchrotron radiation losses are very low due to low
equivalent undulator strength Kw≤1[1].
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