
IS COMPREHENSIVE AND INTUITIVELY USABLE COMMISSIONING
SOFTWARE FEASIBLE?

R. Bakker, T. Birke, R. Müllery , BESSY, Berlin, Germany

Abstract

The commissioning period is challenging both for provider
and user of accelerator operation software. With increasing
knowledge of the specific accelerator new functionalities
and methods become important. The variety of imple-
mented features grows until certain standard procedures
are settled and the programs can be simplified again for the
all day tasks. It is not too difficult to provide the requested
functionalities and certain handles for a graphical usage for
expert users. For the general member of the commission-
ing crew, however, the GUI may consist of huge windows,
context dependent presentations, hierarchically structured
menu trees or compact screens dominated by (modifier)
key and mouse click navigation. Understanding and us-
ability of the programs tends to decrease with the increase
of available features. By means of examples like the orbit
display and control program the problem is outlined and
some guidelines leading out of the dilemma are given.

1 GENERAL ORIENTATION

The fulfillment of the apparent requirements for a graphical
user interface (GUI) on a windowing system is the easy
part of the design for an accelerator man-machine interface.
Windows should not be too large. This would often hide
other relevant information. They should not be too small to
be readable. Behaviour and appearance should be uniform
and consistent. Conflicts, inconsistant or harmful usage has
to be prevented by protection mechanisms within the code.
Configuration of action elements (e.g. menues) should be
determined by the actual program context.

In addition control software should obey some general
rules that help to shuffle around the piles of windows. E.g.
standardized head lines with a color coded title help to
identify the scope of the application like accelerator part or
device class involved. An ‘About’ button popping up author,
version number and program status information helps to find
the competent expert to get pointed support.

2 INFORMATION FINDING

The first obvious approach to give access to program func-
tionalities would be an open arrangement of controllers on
a flat screen. As the windows get overloaded or too big
grouping of entries according to common area of function-
ality becomes necessary. This may be done by hierarchies
of sub-windows or menue trees. Often the unifying root

�Funded by the Bundesministerium für Bildung, Wissenschaft
Forschung und Technologie and by the Land Berlin

y Email: mueller@bii.bessy.de

entry is no more unique and meaningful. A not very pre-
cise search is required to find the desired function. One
solution is to offer multiple ways to accept user entries
simultaneously: menue, buttons on subwindows and key-
board shortcuts. The other way is to aim at very compact
screens built from a few well designed and possibly multi-
functional elements. A well designed example is the CERN
wheel switch[1] (see Fig. 1).

Figure 1: Wheel switch – example of a well designed widget

It can be operated in a secure way with mouse clicks,
keyboard arrow keys and by entering the numeric value.
The input field accepts only numerical digits. The accessi-
ble MIN/MAX values are apparent. Since it scales nicely it
fits into most panel layouts.

The commercial XRT/graph[2] widget is another exam-
ple. It supplies various convenient zooming, printing and
data presentation options. The programming interface al-
lows to install dedicated zooming grids, to attach pop-up
labels to each data point, to (de)select points and to drag
values.

Figure 2: Clipping of a display showing the actually mea-
sured orbit data and the predicted effect of a 4-bump with
angle and amplitude specified at 75.0 [m]

Fig. 2 gives an impression how it can be used to dis-
play the measured orbit and the predicted effect of a closed
bump. The target position of the bump (long vertical bar)
can be freely placed with arbitrary precision by zooming
into the lattice and selecting the location with a mouse
click. Experts like it, regular crew members are reluctant

0-7803-5573-3/99/$10.00@1999 IEEE. 726

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

to memorize the corresponding mouse button bindings.

Figure 3: Clipping of a display showing the actual corrector
set points and the new values the program would send to 4
power supplies to modify the orbit at 75.0 [m] as predicted
in Fig. 2. The new set point of vertical corrector VS2P2T3R
at 81.62 [m] will be 0.352054 [A].

Fig. 3 shows the corresponding corrector set point screen.
The power supplies forming the closed 4-bump are selected
by clicking into close vicinity of the desired element. As
in the orbit screen device names, location and precise set
points are accessible through pop-up labels.

During commissioning it frequently happens that newly
released functionalities are hooked into the existing appli-
cation tree as it is found to be adequate. After a time of
experience or by adding other new features a better, cleaner
and extendible structure becomes visible and the tree is
adapted. Some users quickly accomodate to the new differ-
ing behaviour, others tend to feel lost and call for support.

3 BASIC PROGRAM UNDERSTANDING

Complexity and severity of actions caused by user request
differ drastically. A mouse click may e.g. shuffle down a
window and some pixels apart it may shut down a 1000 [A]
power supply loosing valuable beam time. Conventional
means to emphasize these differences are color coded ‘dan-
gerous’ buttons, pop up confirmation windows, or blocked
actions in inappropriate contexts.

However, there is a wide grey area where it seems to
be impossible to give additional guidance. E.g. most users
know that programs continue to run even if moved to another
workspace or iconified. The majority would be annoyed if
one would disallow iconification of a running correction
algorithm to prevent it getting out of sight.

Where the perception of a certain action disagrees with
reality the unrecognized misusage causes misleading prob-
lem descriptions and is a constant source of errors. An ex-
ample is a user tuning the machine and saving several ‘good’
set points to the dedicated persistent memory fields[3] to be
able to return to these values. For comparison with a ref-
erence he eventually reloads a snapshot file. As a specified
behaviour all saved values are overwritten by values from
the file. If the user is not aware of this sideeffect he no-
tices an unexplainable modification of the data set he just
worked on and reports an unreliable behaviour of the control
system.

There is no self-explaining way of mapping commission-
ing progress into the system. E.g. during beam threading
times the fluorescent screens are frequently needed and
have to be freely and conveniently movable. As soon as
beam based procedures prevail it is favourable to freeze the
top level fluorescent screen drive buttons when reinjection
is not possible. This prevents accidential beam loss. Of
course on a lower layer the operator can force the screen to
drive in. Without explicit explanation the user would notice
a change and assume a malfunction. From his previous ex-
perience he would generally not be able to classify the new
behaviour as a feature.

In another class of inappropriate understanding simple
elementary assumptions about basic knowledge disagree.
A programmer supplying a filter for the selection of device
subsets takes the syntax of a regular expression for granted -
which is unknown to a user not familiar with the underlying
tools. The filter is then error-prone and of very limited use.

Figure 4: A complex synoptic view: action buttons, status
information, related displays, performance summaries and
active per-sector arrangements of the installed devices

For a power supply it is not acceptable if a new setpoint
would require adjustment of internal regulator parameters
until the required output current is delivered with the spec-
ified stability. This has to be already adjusted in the labo-
ratory. Comparable tuning of the new accelerator requires
beam under various conditions. Relevant parameters have
to be identified and determined during commissioning. The
meaning of necessary parameters require three levels of un-
derstanding. (1) basic elements: a user pushing a ‘correct’
button in an orbit control program has reasons to expect
an action that results in an improved orbit. (2) program

727

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

intrinsics: information content of difference orbits compar-
ing ‘actual’ and ‘old’ data is ambigous if the knowledge
is missing that ‘old’ denotes the orbit measured when a
prediction/correction has been made or a ‘Set Ref.’ button
has been pressed and ‘actual’ means the constantly updated
one. (3) applied methods: to be able to set the cut off
factor for the eigenvectors of a SVD correction procedure
to a reasonable value one has to know in principle how the
SVD algorithm works. During commissioning the number
of adjustable parameters grows in level (2) and especially
in (3). But as soon as the correction procedures are settled
level (2) and (3) will collapse to a few action buttons and
the rest disappears for the regular user.

4 USER DEPENDANT ABSTRACTION
LEVEL

Synoptic views are a combination of navigation tool, doc-
umentation, aid to memory and fault detection facility (see
Fig. 4). For the entry level user they are a kind of tutorial
access to the control system. At a running facility synop-
tic views dissappear. They are replaced by more efficient
tools. Example is an alarm handler, which is a much faster,
complete and selective fault detection tool than the human
scanning of synoptic screens (see Fig. 5). But it is abstract,
corresponds to a programmers view and does not meet the
expectation of a running-in crew. At the beginning of com-
missioning a balanced compromise between pictorial and
abstract tools is required.

Figure 5: Alarm handler: the main button (lower left) starts
blinking, clicking opens the tree leading to the faulty de-
vice(s), the ‘P’ button opens the device control panel suited
to fix the problem.

An orbit measurement tool needs code for data handling,
statistical evaluation, comprehensive display etc. A visual
orbit correction tool needs most of this code too. In ad-
dition to the orbit data the corrector set points, conversion

factors, drive limits etc. have to be administered. With
respect to management of all data orbit modifications by
closed bumps and orbit flattening procedures are closely
related orbit control tasks. Furthermore the described func-
tionalitiesare very similar for any accelerator, especially for
the different accelerator sections transfer line, synchrotron
and storage ring. With respect to code re-usage and si-
multaneous development it is an efficient approach for a
programmer to implement all functionalities named above
within one generic program. The GUIs for the different
accelerator sections and the corresponding specific func-
tionalities are the remaining individualized code fragments
that have to be adapted.

Typically operators have a different view. They have
to concentrate on one task: orbit measurement or orbit
correction or bump modifications. Additional elements
superfluous for this task are disturbing, distracting, making
an efficient usage of the program more difficult. It would
be a considerable improvement to provide distinct GUIs for
the elementary tasks measurement, correction and bump.
They should contain only elements that are relevant for the
specific context. In addition each of these instances should
have a user mode with all default values set and hidden
and an expert variant with full control of all parameters.
Preference has to be given to a separate instantiationover an
additional expert screen. Experienced users find additional
navigation effort caused by expert level windows annoying.
With the GUI server used at BESSY[4] these modifications
would not be very complicated or hard to maintain - it
simply has not been thought of.

5 SUMMARY

Complex software tasks like providing accelerator com-
missioning programs require a certain amount of teaching
how the software is meant to be used. Providing concise
manuals is mostly not sufficient. One has to allow for a
learning time until a precise use of the tools is possible.
Functionalities of effectivity-enhanced expert modes are
appreciated later. Due to shortage in man power and a tran-
sient nature commissioning software can not compete with
the streamlined and consistent graphical user interfaces of
commercial packages. Further more the constantly ongoing
software development under time pressure is accompanied
by newly introduced bugs that did not show up during tests.
This adds complexity to an already difficult situation.

6 REFERENCES

[1] The wheel switch widget has been originally developed at
CERN (Contact: Franck.DiMaio@cern.ch). Later other lab-
oratories (ESRF, BESSY) contributed.

[2] XRT/graph is a trademark of KL Group Inc., Toronto, Ontario

[3] R. Bakker, T. Birke, B. Kuske, R. Lange, R. Müller, ‘Ex-
periences with Commissioning Software Tools at BESSY II
Status’, this conference (MOP31).

[4] T. Birke, R. Lange, R. Müller, Proceedings of the 1995
ICALEPCS, Chicago, 1995, p.648

728

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

