
SOFTWARE ENGINEERING PRACTICES FOR CONTROL SYSTEM
RELIABILITY*

S. K. Schaffner, K. S. White#

Thomas Jefferson National Accelerator Facility, Newport News, VA

* Work supported by the U.S. Department of Energy, contract DE-

AC05-84ER40150
Email: karen@jlab.org

Abstract

This paper will discuss software engineering practices
used to improve Control System reliability. We will begin
with a brief discussion of the Software Engineering
Institute’s Capability Maturity Model (CMM) which is a
framework for evaluating and improving key practices
used to enhance software development and maintenance
capabilities. The software engineering processes
developed and used by the Controls Group at the Thomas
Jefferson National Accelerator Facility (Jefferson Lab),
using the Experimental Physics and Industrial Control
System (EPICS) for accelerator control, are described.
Examples are given of how our procedures have been used
to minimize control system downtime and improve
reliability. While our examples are primarily drawn from
our experience with EPICS, these practices are equally
applicable to any control system. Specific issues addressed
include resource allocation, developing reliable software
lifecycle processes and risk management.

1 INTRODUCTION
Jefferson Lab, a multi-use facility consisting of a
Continuous Electron Beam Accelerator simultaneously
serving three experimental halls and a Free Electron Laser
outfitted with six user labs, is unique in its use of a single
control system lab-wide. Both machines, along with their
respective experimental areas and cryogenic facilities, use
EPICS for their control and monitoring needs. EPICS is
the result of a collaboration, which began in the early
1990’s, between Los Alamos National Laboratory and the
Advanced Photon Source at Argonne National Laboratory.
Jefferson Lab is currently the second largest EPICS site in
a collaboration that now encompasses over 100
laboratories and universities worldwide.
 While EPICS continues to develop to include more
capabilities, it is important to note that EPICS is a toolkit,
providing development tools and runtime programs, to
form the core of a complete control system based on the
standard model.1] Known as an attractive alternative to
the previously popular approach of custom coding all
control system functions at each facility, EPICS embodies
software sharing at its best. The functions provided by the
collaboration represent the core requirements for most

modern control systems: control algorithm development
and execution, data monitoring, storage, retrieval, and
visualization, and network communication between front
and back-end processors. Specific control algorithms,
invariably different between sites, and some device
drivers, must be implemented by each facility using
EPICS development tools. These tools allow programmers
to generate a combination of code and configuration files
used to direct EPICS runtime programs. Using this
approach, EPICS provides a well-tested core for a
complete control system that behaves according to site-
specific instructions.
 Using code generated by other laboratories saves
programming effort by eliminating the duplication of
effort present when recreating commonly used functions
at each site. Additionally, all sites benefit from the
experience and expertise gained by others through their
use of EPICS. The base code provided to the EPICS
community benefits from more development effort and
testing than could be achieved by a single site. However,
using EPICS does not eliminate the need for software
engineering and programming efforts at each site. The
EPICS installation itself, specific control programs, and
configuration data must be supported. Most often, this
support includes software development, maintenance, and
upgrade activities. While managing this body of
collaborative and site specific software in a way that
provides consistent, reliable controls for machine
operations can be challenging, it is not substantially
different than managing other software projects of similar
size and complexity. Such management requires reliable
processes suited to the needs of the project and staff.
 While Jefferson Lab is operational, there are still many
upgrades in progress and planned for the future that
require modifications to existing control programs or the
development of new code. Additionally, these upgrades
must be accomplished during brief scheduled maintenance
periods with limited time for testing. These project
requirements mean we must be able to quickly install new
software, perform tests and restore the operational
machine. These needs have driven the development of an
appropriate Applications Development Environment and
corresponding software management processes.

0-7803-5573-3/99/$10.00@1999 IEEE. 729

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

2 STANDARD PRACTICES
It is common for software organizations to develop their
own internal standards and practices, but this effort can be
streamlined by studying current best practices and
incorporating this information in a way that is locally
appropriate. Standard practices can provide proper
guidelines, help prioritize the implementation of new
processes, and be used as a checklist to ensure all
necessary process areas are covered.
 As the software industry grows and matures, much has
been studied and written regarding software engineering
practices. The most complete and definitive work on this
topic, CMM, comes from Carnegie Mellon University’s
Software Engineering Institute (SEI).[2] This well
documented model provides a framework for evaluating
and improving key practices used to provide reliable
software development and maintenance capabilities.
Using a maturity based approach, CMM gives the
software engineering community an effective and
standardized means for modelling, measuring and defining
software development processes. The model defines five
levels of maturity, summarized in Table 1, and details the
underlying principles and practices needed to improve
process maturity and thus produce more robust, reliable,
maintainable software systems. CMM recognizes that
such improvements require ongoing effort and provides a
framework to help organize and prioritize this effort. This
model is very useful because the information is easily
accessible and applicable regardless of the systems,
projects, languages or techniques involved. The model
allows software engineers to assess their systems to
determine the current maturity level and the needed
maturity level based on risk factors. Once this assessment
has been done, process improvement can be introduced
over a period of time, in parallel with project
development. While it is ideal to have software processes
defined and in use from the beginning of a project, in
reality it seldom works this way. CMM allows processes
to be added as the project grows and transitions from the
development stage to an operational system.

Table 1:

 Level Characteristics Focus Areas
 1

 Initial
 Chaotic, few if any
processes

None

 2
Repeatable

 Processes for
management

Requirements
Management
Project Management

 3
 Defined

Processes for
management and
engineering

Training
Process Definition
Risk Management
Project Performance

 4
 Quantified

Mechanisms to
measure processes and
quality

Quantitative Process
Measurement
Quantitative Quality
Measurement

 5
 Optimizied

Process optimization Innovation and
Improvement

 Most typical software efforts in non-commercial,
research oriented environments, like laboratories, begin at
Maturity Level 1. Employing even a few of the CMM
techniques can ensure that the project does not also end
there. Left to their own devices, software engineers
usually develop some processes resulting in varying levels
of product quality. The challenge is getting all members of
a software development group to adopt the same reliable
practices. Adopting standard practices, like those
described in CMM enables this to occur consistently and
at the correct priority. In order to ensure success, it is
important that the software development staff develop the
actual process definitions. This ensures efficient processes
without unnecessary overhead. The role of management is
to specify the process goals and support the development
and use of the resulting processes. Taking this approach
usually results in maximum adherence to the processes
and standards since the developers appreciate the benefits
of the methods. Additionally, a properly designed and
implemented development process will increase the
efficiency of programmers by providing tools to execute
redundant tasks, thus saving time and ensuring
consistency, a key to reliability.

3 PROCESSES AND TOOLS
As with most projects, Jefferson Lab’s control system
development began as a chaotic effort. Over time, and
without the benefit of CMM, the Controls Group naturally
implemented processes designed to aid in the software
development lifecycle. The group first began looking at
the process of requirements management. This arose out
of a need to organize the haphazard approach to system
specification that produced few if any useful requirements
documents. Requirements were received from many
different customers, sometimes verbally, some
requirements conflicted with others, and all were labelled
high priority. Written requirements often did not exist or
did not contain the kind of information needed to proceed
with a project. To put order to this chaos, we developed a
template for software requirements that was used to
structure the information received and ensure that all
necessary information was acquired. Additionally, for
software that was to be used by multiple groups at the lab,
meetings were scheduled with representatives from each
group to aid in resolving conflicting requirements.
Establishing this standard template quickly improved the
requirements gathering process and ensured there was a
documented baseline for each major subsystem. In order
to continue to benefit, the documents must be updated
when new features are requested. Although updates can be
difficult to sustain, especially with frequent upgrade
requests, they pay off during system maintenance and
subsequent upgrade work.
 Faced with a seemingly endless list of tasks and a fixed
number of software engineers, we next focused on

730

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

methods for project planning, tracking and resource
management. These issues were addressed by the
development of a software task database to document
requests, assign priorities and resources, and track
progress. For larger projects, preliminary meetings are
held to help determine the scope and complexity of the
software effort to make advance planning easier. The
group leader prioritizes requests based on lab-wide goals,
customer input, and resource availability, and keeps the
database information up to date. Another tool is employed
by the software engineers to track changes to software as
upgrades occur. This information is integrated into the
configuration management system accessible via the
World Wide Web and is also used to facilitate software
quality assurance.
 A number of tools and techniques have been developed
to improve software quality and minimize controls system
downtime. Software testing can be difficult due to the lack
of adequate off-line facilities and limited machine test
time. Before any software is installed in operations, a
testplan is written documenting the application, software
test procedure, and roll back information in case problems
arise after beam operations commence. The testplan is
reviewed and scheduled by a team leader. In addition to
the application specific tests, machine maintenance
periods are followed by a comprehensive control system
quality assurance procedure. This ensures all controls
computers, applications and communications are
functioning correctly. The Controls Group also provides
24 hours on-call support for operations. The software on-
call person is always available via pager and is trained to
either solve problems that arise or to contact the system
expert if needed. Even if software quality assurance led to
error free operational code, control system on-call support
would be needed to handle hardware failures and
situations where new operational procedures introduce
disruptive resource loading. It is interesting to note that
the frequency of off-hours calls has been significantly
reduced since the testplan process has been put in place
and control system downtime has dropped as well.[3]
 Another aspect of our software process involves
configuration management. A source code structure has
been adopted making it possible to introduce automated
tools to create, version, and install operational software.
These tools enable software developers to quickly load
new code and roll back to previous versions, greatly
enhancing reliability by insuring that all process steps
have been consistently applied to each application. In
addition to reliability improvements, such tools make the

developers’ job easier by automating lengthy installation
steps that were previously typed by hand.

4 CONCLUSION
At Jefferson Lab, the development and use of good
software development processes has improved the quality
of our software and reduced machine downtime due to
control system problems. Because we inherited an
unorganized development effort in progress, we have
introduced new processes one at a time, phasing in
supporting tools as time allowed. Our experience
developing these processes and tools has led us to define
the following list of characteristics of good software
processes:
1. Processes are developed by those who will use them.
2. Processes are supported by management.
3. Processes take into account project and developer

needs.
4. Processes make programmers’ work easier, more

efficient.
5. Processes produce repeatable, consistent results and

automate repetitive steps.
6. Processes are documented and publicly available.

This list is useful to help design new processes and
evaluate existing processes for possible improvements.
We plan to continue developing and improving our
processes using SEI guidelines such as the CMM
framework. By standardizing our development approach
and prioritizing work, we have been able to improve
programmer productivity and reduce the level of stress
and pressure on the group. The number of operational
control system failures has been reduced along with the
associated lost time. We have found the time invested in
developing good processes has been well worth the effort,
and believe that more improvements can be made.

5 REFERENCES
[1] M. E. Thuot, L. R. Dalesio, “Controls System

Architecture: The Standard and Non-Standard
Models”, Proceeding of the 1993 Particle Accelerator
Conference”, Washington D. C.

[2] Mark C. Paulk, Charles V. Weber, Bill Curtis, “The
Capability Maturity Model: Guidelines for improving
the Software Process (SEI Series in Software
Engineering), Addison-Wesley Publishing Company,
June 1995.

[3] K. S. White, H. Areti, O. Garza, “Control System
Reliability at Jefferson Lab”, ICALEPCS’97
Proceeding, Beijing, China.

731

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

