
USING SERVERS TO ENHANCE CONTROL SYSTEM CAPABILITY*

M. Bickley, B. A. Bowling#, D. A. Bryan+, J. van Zeijts&, K. S. White, S. Witherspoon,
Thomas Jefferson National Accelerator Facility, Newport News, VA

Abstract

Many traditional control systems include a distributed
collection of front end machines to control hardware.
Back end tools are used to view, modify, and record the
signals generated by these front end machines. Software
servers, which are a middleware layer between the front
and back ends, can improve a control system in several
ways. Servers can enable on-line processing of raw data,
and consolidation of functionality. In many cases data
retrieved from the front end must be processed in order to
convert the raw data into useful information. These
calculations are often redundantly performed by different
programs, frequently offline. Servers can monitor the raw
data and rapidly perform calculations, producing new
signals which can be treated like any other control system
signal, and can be used by any back end application.
Algorithms can be incorporated to actively modify signal
values in the control system based upon changes of other
signals, essentially producing feedback in a control
system. Servers thus increase the flexibility of a control
system. Lastly, servers running on inexpensive UNIX
workstations can relay or cache frequently needed
information, reducing the load on front end hardware by
functioning as concentrators. Rather than many back end
tools connecting directly to the front end machines,
increasing the work load of these machines, they instead
connect to the server. Servers like those discussed above
have been used successfully at the Thomas Jefferson
National Accelerator Facility to provide functionality such
as beam steering, fault monitoring, storage of machine
parameters, and on-line data processing. The authors
discuss the potential uses of such servers, and share the
results of work performed to date.

1 INTRODUCTION
The classic control system in use in many locations today
consists of a collection of front end machines, distributed
around a facility, largely in order to keep them close to the
hardware they are controlling. These front end machines
are interfaced directly to the hardware, and are responsible
for maintaining variables associated with the hardware, as
well as responding to queries about the state of or
modifying settings for the hardware.

 * This work was supported under U.S. D.O.E. contract #DE-AC05-

 84ER40150

 # Now with Arrow Electronics, Baltimore MD

 + Email: bryan@jlab.org

 & Now with BNL, Upton NY

 The users view the system from the point of view of the
back end machines. These machines, often UNIX
machines or PCs, run applications programs which modify
the settings of hardware, display values from hardware,
and monitor the control system’s behavior.

Very frequently, the raw information obtained from the
front end machines is not directly useful to the users, but
needs to be processed in some way to make sense. Doing
this in a back end program has the advantage of moving
processing from the front end servers to the back end
servers, which are generally less critical to the real-time
control of the hardware, therefore reducing the overall
load on the critical systems. This approach has several
disadvantages, however.

One disadvantage is that if many programs need to look
at some new value which is derived from several control
system variables, each must calculate these new values
independently. This increases the resource consumption
on the back end servers, the chance of introducing errors
into the system, and the development time for each new
application that must support these new values.
Additionally, these new derived values will generally not
be directly available for archiving, viewing, or monitoring
by traditional tools designed for direct monitoring of
control system values.

2 MIDDLEWARE SERVERS

2.1 What is a middleware server?

The solution to these problems taken by the authors is to
develop middleware servers. A middleware server is a
program, a “software server”, which obtains data from the
front-end servers, calculates new values, and creates
virtual control system variables for viewing by back end
tools. The goal of the middleware server is for it to be
virtually transparent to the user – the user should not be
concerned with whether the variables are obtained directly
from the front end machines or are virtual variables on a
middleware server. In addition, the algorithms used to
derive these new values are located in one point, and
easily be modified without the need to modify the client
programs.

2.2 Middleware servers at Jefferson Lab

At the Thomas Jefferson National Accelerator Facility
(JLab), the front end machines are dedicated machines
running WindRiver System’s VxWorks, and EPICS, the
Experimental Physics and Industrial Control System [1].
These systems monitor and control many aspects of the

0-7803-5573-3/99/$10.00@1999 IEEE. 732

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

machine, from magnets for beam optics, to beam position
monitors, to cryogenics.

The back end tools at JLab are run on HP-UX UNIX
machines, and consist of a mixture of the general purpose
EPICS tools, such as viewers, archivers, and machine
configuration save and restore tools, as well as in house
developed applications. In addition, JLab uses a higher-
level protocol called CDEV, for Common DEVice [2].
CDEV provides the advantage of making EPICS
variables, and variables from other sources available to the
user in such a way that they can be accessed with the same
interface. Many of the existing tools for EPICS are being
ported to CDEV, and much of the new development at
JLab is based on CDEV.

CDEV is particularly well suited to developing servers,
since a Generic Server engine is provided [3]. This is a
simple software construct that can be used to rapidly
develop middleware servers. It provides the framework
for monitoring existing values from the control system,
and for creating new attributes to be monitored by the
back end servers. While enhancements to this framework
are sometimes needed when developing an application, the
developer is generally free to concentrate on developing
the algorithm associated with processing the data, rather
than being concerned with the framework and
communications structure.

3 USES FOR SERVERS
There are may ways middleware can be used. As the
authors continue to develop applications, more uses for
these servers present themselves.

3.1 Servers as online data sources

One of the primary areas in which servers are useful is in
providing or storing information to the control system that
would otherwise either not be available, or that might be
stored in front end machines needlessly. The servers can
be constructed to contain CDEV variables that can be
read, set, or monitored by users. These values do not need
to come from the front end servers, but can be standalone
values. Virtually any arbitrary value, from the names of
the current operations crew to theoretical machine
parameters can then be used just as if they were control
system values.

Additionally, these servers can be built with logic of
their own. While still not manipulating the control system,
they can be loaded with theoretical values for certain
parameters, and calculate new values from these, perhaps
using one or more control system values in the
computation. Since such servers run on inexpensive UNIX
workstations, the load of performing these calculations is
moved off of the front end computers.

At JLab, our Model Server Artemis is an example of
such a server [4]. Two instances of this application are
used. Both are initially loaded with the theoretical optics
for the machine. The second instance of the model is the

periodically updated with actual values for components
from the machine. Based on these input values, transfer
matrices, alpha and beta values etc. are calculated and
made available to optics applications.

Additionally, information about the locations of signals
(which front end server a particular channel resides on) is
stored in such a server. This is used, along with modified
versions of back end tools, to speed connection time when
accessing control system channels [5].

3.2 Servers as controllers

Another useful application of the server is as an actively
controlling program. In this capacity, the server functions
as a less deterministic feedback system. The server
monitors a number of values related to certain parameters
of the control system. Based upon these values, new
parameters are calculated and loaded back into the
machine. This can continue periodically. In addition, the
server allows the controls for the algorithm, such as
parameters, whether to apply changes or not, etc., to be
made available as control system signals. This makes
monitoring and controlling the behavior of the server
simple.

At JLab, we use such servers for several beam control
applications. Three servers fall into the category of
“locks”. These servers monitor parameters of the beam –
position within the beampipe, energy, and current – and
try to “lock” them to some predefined value [6]. This is
accomplished by reading the current value of the
parameter one wishes to lock, calculating new values for
parameters that modify the desired parameter, and
applying those changes to the control system. As an
example, for beam position one would read the values of
BPMs (Beam Position Monitors), determine where and by
how much the beam is deviating from the ideal, and apply
changes to steering magnets to return the beam to the
optimal location. These servers perform these checks
every 1 to 5 seconds, depending on the configuration of
the accelerator.

3.3 Servers as monitoring systems

Servers can also be used to provide online monitoring of
values in the system for diagnostic purposes. Most control
systems provide some mechanism for noticing if a single
signal exceeds predefined limits and bringing this to the
operators attention. Servers provide the benefit of
monitoring multiple signals and inferring when a value is
bad based upon its relationship with other signals.

The server can also monitor values from multiple
signals, and calculate new values from these signals – a
“value added” signal. As in the case of the online data
sources, doing the processing at the server level saves
CPU load on the front end servers, leaving them free to
control hardware. It is also superior to calculating these in
the client program if multiple clients need this combined
information.

733

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

At JLab, this style of server is used for enhanced alarm
servers, which monitor special parts of the machine and
alert operators of trouble based on complex algorithms
involving multiple signals. Additionally, this style of
server is used in a program which calculates changes to
the machines energy at a very low level, allowing
interested parties to notice changes in the system.

Additionally, a new more generic form of this server is
being explored. The proposed tool, called the Automator,
is intended to allow for generic, user defined instances of
such a server to be created and used [7]. The server could
monitor for specific alarm conditions and, optionally, take
predefined actions when such conditions occur.

3.4 Servers as caching devices/concentrators

Finally, servers can be used to cache or concentrate
signals that are frequently accessed. By modifying the
information flow so that the back end clients access the
middleware server rather than the front end machine
directly, the load on the front end machines is reduced,
again freeing these machines for hardware control and
processing. This type of server is often combined with
some of the functionality of the monitoring servers
mentioned above.

At JLab, we use a hybrid of this type of server and a
monitoring server for BPM data. With many BPMs, and
many applications interested in using them, we created a
server to monitor this data. Multiple clients then connect
to the middleware server, rather than connecting directly
to the front end machine, which now has less connections
to service.

Our server also provides several additional services. It
monitors the status information provided by the BPMs and
produces enhanced status information. It filters out
transient failures in the BPMs, and attempts to ensure that
different attributes of information about a given BPM are
correlated in time. This ensures that the client sees an
accurate picture of the machine status.

4 EXPERIENCE
The experience the authors have had with these servers
has generally been positive. These servers seem to provide
a reliable, simple way of implementing what would
otherwise be very complex actions. There have been
problems associated with these servers, as there are with
all software applications, and perhaps a tendency to use
the tool to try to solve all problems, but the concept seems
to be very sound.

The authors have also found that these servers have
practical limits to how large or how rapidly they can
process information. Since these servers are monitoring
values, and posting monitors to clients on changes, one
must be careful not to overburden the code. One server
developed on site attempted to process one hundred
million events (changes in the control system that required
modification to virtual variables) per day, or about 1000

events per second. The peak load during transient events
(such as beam turning on or off) was much higher than
1000 events per second. This server exhibited occasional
problems with coherence with the control system,
particularly immediately following high event count
peaks. The solution was to split this server into small
servers, to reduce the high number of events handled.

Similarly, the active feed back programs, or locks, have
a limit on how fast they can process. This is partially
determined by the algorithm and the time needed to
calculate a solution, but is also limited by the time needed
to monitor the signals from the control system. For
numerically intensive calculations a feedback loop of
approximately 1Hz. seems to be a comfortable top speed
for such servers, when running on a Hewlett Packard K-
class machine.

5 CONCLUSION
In conclusion, these servers offer the developer a powerful
tool for enhancing capability, often without the need to
further burden front end servers or modify tested, working
front end code. It is not a panacea for every control system
problem, but when used properly is a powerful and
effective way of addressing certain software problems.

6 REFERENCES
[1] http://www.aps.anl.gov/asd/controls/epics/EpicsDocumentation/

EpicsGeneral/epics_overview.html

[2] J. Chen, G. Heyes, W. Akers, D. Wu and W. Watson III, “CDEV:
An Object-Oriented Class Library for Developing Device Control
Applications”, Proceedings of ICALEPCS 1995

[3] W. Akers, “An Object-Oriented Framework for Client/Server
Applications”, Proceedings of ICALEPCS 1997

[4] B. A. Bowling, W. Akers, H. Shoaee, W. Watson, J. van Zeijts, S.
Witherspoon, “Evaluation of a Server Client Architecture for
Accelerator Modeling and Simulation”, Proceedings of CAP 1996

[5] D. Jun, D. Bryan, W. Watson, “Centrally Managed Name
Resolution Schemes for EPICS”, Proceedings of ICALEPCS 1997

[6] J. van Zeijts, et al., “Design And Implementation Of A Slow Orbit
Control Package At Thomas Jefferson National Accelerator
Facility”, Proceedings of PAC 1997

[7] D. Bryan, M. Bickley, K. White, “The Automator : Intelligent
Control System Monitoring”, these proceedings (1999)

734

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

