
JEFFERSON LAB PLOTTING TOOLKIT FOR ACCELERATOR CONTROLS*

J. Chen, M. Keesee, C. Larrieu, G. Lei# +

Thomas Jefferson National Accelerator Facility, Newport News, VA

Abstract

Experimental physics generates numerous data sets that
scientists analyze using plots, graphs, etc. The Jefferson
Lab Plotting Toolkit, JPT, a graphical user interface
toolkit, was developed at Jefferson Lab to do data plotting.
JPT provides data structures for sets of data, analyzes the
range of the data, calculate s the reasonabl e maximum,
minimum and scale of axes, sets line styles and marker
styles, plots curves and fills areas.

1 INTRODUCTION
The Continuous Electron Beam Accelerator Facility at
Jefferson Lab provides high current electron beams of up
to 4 GeV energy to three experimental halls. The machine
consists of two superconducting linear accelerators
connected together with 9 arcs . An injector system
provides polarized and unpolarized electrons from two
different sources. The Jefferson Lab Control System,
which is built on the Experimental Physics and Industrial
Control System (EPICS), is a distributed system using a
client-server architecture . The system consists of two
computing levels. The first level is composed of Unix
workstations and X-terminals that execute a wide variety
of system applications and high level applications. The
second level is composed of single board computers,
EPICS software and the correspondin g device control
applications. [1]

One of the high level applications , called lute, analyzes
and displays data from the Jefferson Lab wire scanners.
The lute data analysis program relied on a commercial
software package for its graphics. This package contains
many more features than that are required by the few
applications at Jefferson Lab that use it. So, when the
controls group decided not to support the license for the
commercial software for HP-UX 10.XX and higher
systems, another solution was needed. The plotting toolkit,
JPT, was developed to accomplish the analysis,
calculation, scaling, and display of data for lute. Emphasis
was placed on developing JPT to replace th e functionality
of the commercial package while keeping the source
codes that use it unchanged.

*Work supported by the U.S. Department of Energy, contract DE-

AC05-84ER40150
Email: leige@jlab.org
+On leave from the Institute of High Energy of Physics, Chinese

Academy of Sciences

2 DESCRIPTION OF LUTE
Lute is a high level application that is used for data
reduction and analysis for wire scanner data. Due to the
geometry of the wires in relation to the beam, the wire
scanners at Jefferson Lab provide scanned profiles
representing the horizontal, x/y coupling, and vertical
beam sizes. See figure 1. The wire scanner data is used for
beam emittance measurement, beam matching, beam halo
determination, beam energy spread measurement, and
absolute beam energy measurement.

Figure 1. Jefferson Lab wire scanner

The lute application displays the wire scanner data
graphically. See figure 2. The entire scan, beam signal

Figure 2. Display of Lute

0-7803-5573-3/99/$10.00@1999 IEEE. 747

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

versus position in mm, is displayed in a large graph across
the bottom of the interface, and the 3 distinct peaks (one
from each wire) are displayed in 3 graphs at the top of the
interface. Several calculations are also performed on the
data for each peak and the results displayed on the lute
interface. These include sigma, position, RMS and
centroid calculations. The graphical displays and
calculations assist the operators and accelerator physicists
in determining beam characteristics.

3 JEFFERSON LAB PLOTTING
TOOLKIT

The Jefferson Lab Plotting Toolkit (JPT) provides a graph
widget that displays data graphically in a window and can
interact with users. The graph widget can be used just like
other X Toolkit and Motif widgets such as buttons, labels
and menus. It has resources that determine how the graph
will look and behave. Writing programs using JPT is
similar to writing any other kind of X Toolkit and Motif
program [2][3].

JPT has resources that allow control of:
• Graph data to be plotted, on one or more plots.
• Graph type (plot and area). A Plot graph draws

each set as connected points of data. An Area graph
draws each set as connected points of data, filled in
below the points.

• Data styles: line colors and patterns; fill colors and
patterns; line thickness; point style, size and color.
How a data value looks when it is displayed
depends on the data style that has been defined for
the data values.

• Strings, position, color and font for the title.
• Strings, position, color and font for the legend.
• Graph color, font and border style.
• Axis label font; label string; color for axis and its

label, tick marks and tick labels.
• Axis and data minimum and maximum, numbering

and ticking increments, grid increments, origins.
• Placement of axes, annotation, origins.
• Control of user-interaction with the widget using

callback resources.
• Markers and Text Areas.

JPT also provides several procedures and methods
which

• Allocate and load data objects containing the
numbers to be displayed;

• Attach the data to the axes;
• Create, attach, detach, destroy text object;
• Map data from pixel values to floating point values

in a graph;
• Convert a floating point value to an X Toolkit

parameter ArgVal

3.1 Implementation

JPT was developed based on the AthenaTools Plotter
Widget Set (AtPlotter for short) [4]. 114 new resources
were added into the original AtPlotterWidget to develop
the JptPlotterWidget. Axes and plots were created inside
the methods of the JptPlotterWidget and connected to the
data to be displayed. Procedures were added to create data
objects for plotting, to read data from files into data
objects, and to attach the data object to the plotter to
create plots. Data types for some of the resources were
changed also. Text objects with multiple strings,
foreground color, background color, font, border style etc.
were created. The algorithm for calculating the tick-mark
interval was improved for more accurate output of the
plotting. This prevents plots that are too small, and axis
tick-mark labels that are too crowded.

3.2 Make Data

JPT accepts data in two ways:
• Array data, which has successive integers as the

common horizontal values (X values), and sets of
floating point numbers, corresponding to each X
value, for the vertical values (Y values)

• General data, each set of data has pairs of X-Y
values.

When JPT begins to draw a graph, it uses the data
values located in the data structure pointed to by the
XtJptData resource. Data to be displayed can originate
from diverse sources: Unix files, databases, real-time data
feeds, or unrelated processes running on other machines.

If the data resides in a Unix file (and it does not need to
be changed or updated in real time), there are two options
to consider. The first option is to massage the data so that
the file conforms to syntax understood by
JptDataCreateFromFile(). This procedure will allocate the
data object, load it with data from a named file, and return
a handle to the data. Another approach is to allocate a data
object using JptDataCreate(), and populate it with data by
reading the data file (perhaps using fgets() or fscanf().
When the data object is loaded, the graph can be created
and the XtJptData resource set to the JptDataHandle that
references it.

Data that changes in real-time, and graphs that need to
be updated in real-time, require more careful coding. The
Xt Intrinsics provides functions that can be used to trigger
application callback routines to deal with real-time events.

 3.3 Axis Controls

JPT detects the minimum and maximum value of the data
object and determines the extent of the axes based on the
minimum and maximum data values, the origin, and the
numbering increment. By default, JPT displays all data in
the data object. The minimum and maximum resources
can be set by applications if a particular part of the data
set needs to be displayed.

748

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

The increment between tick marks and sub-tick marks
on the axis is calculated by the JPT inner algorithm. The
increment can also be controlled by setting the resources
in the application. There are also resources to specify
whether to draw grid lines, which grid line style to use,
etc.

The axes are optionally labelled and the labels can be
horizontal or vertical.

 3.4 Fonts and Colors

 JPT has resources to set colors for the widget, graph, axis,
title and legend. JPT supports the specification of colors
for the window background and foreground, as well as for
the lines, fill patterns and points that represent data in the
graph itself. Colors are specified using a string containing
the color name, which should appear in the X Window
Server’s color database. On Unix systems, this is normally
the file /usr/lib/X11/rgb.txt [5].

 JPT can choose default colors for the application, so
simple applications need not concern themselves with
color specification. The default foreground and
background color for the widget is black and white. The
graph, axes, title and legend take the widget’s foreground
and background color as default.

 A font may be specified for the title, the legend areas
and for the axes annotation. JPT can use any font
supported by the X Server. JPT accepts the font id to set
the font for axis labels, title strings and legend strings. If
the font is invalid, the “fixed” font will be used instead.

 3.5 Calculate Data Scope

 JPT is capable of analyzing the scope of the data to be
displayed, getting a reasonable representation of the
maximum, minimum, tick and sub-tick intervals on the
axes. Consider an example with a real maximum value of
the data for the Y-axis of 10.03, and the minimum value
of 68.96, with the length of the Y-axis of about 200 pixels.
It is ugly and difficult to set the ticks in the toolkit to draw
the Y-axis with 10.03 as the lowest point and 68.96 as the
highest point. It is better to use 10.00 as the lowest point
and 70.00 as the highest point. Therefore, the algorithm
that is used calculates and rounds four times to get a
reasonable presentation.

 3.6 Text Method

 A text area is an independent rectangular region drawn
over the graphed data. A data structure is provided for the
programmers to define the attributes of the text area
including text strings, text position, string adjustment,
border style, foreground color, background color and font.

 A text area can be attached to the graph in one of four
ways:

• To a pixel location on the window
• To graph data X- and Y-value
• To a data point (set, point index), or

• Above or below a data point (set, point index, Y-
value)

 An application can use a text object to highlight special
points on the graph, or as a more general-purpose label.
There are methods to create, attach, detach and destroy
text area. Any number of text areas can be attached to a
graph, dynamically created, updated and destroyed.

 3.7 Wrapper

 We created a wrapper file that defines macros to map
existing widget, class, resources and functions to the
corresponding parts of JPT. Therefore the current
applications need not change anything. They just need to
re-link to the JPT library to get new executable codes that
have a very similar output to what they had before.

 4 CONCLUSION
JPT provides a graph widget that can be used like other
widgets in the X Toolkit and OSF/Motif. It has many of
the features scientific and business users need in a graph
that will be embedded in another program. It is easy to use
for creating X-Y plots for scientific-style graphics with an
unlimited number of plots on each graph. The axes can be
logarithmic or linear. It is also easy to access application
data.

Figure 2 shows the display of lute using JPT.

 5 ACKNOWLEDGMENT
 Many thanks should be given to Valerie Bookwalter who
helped us maintain the computing environment.

6 REFERENCES

[1] Karen S. White, Hari Areti, Omar Garza, “Control System
Reliability at Jefferson Lab”, ICALEPCS’97 Proceedings

[2] Adrian Nye, Tim O’Reilly, “X Toolkit Intrinsics Programming
Manual”, O’Reilly & Associates, Inc.

[3] Paul M. Ferguson & David Brennan, “Motif Reference Manual”,
O’Reilly & Associates, Inc.

[4] http://lune.csc.liv.ac.uk/hppd/hpux/X11/Toolkits/plotter-6.0p17

[5] Adrian Nye, “Xlib Programming Manual for Version 11”, O’Reilly
& Associates, Inc.

749

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

