
FIRST EXPERIENCES WITH THE CONTROL SYSTEM FOR THE
ACCELERATOR OF ANKA

H. Schieler*, A. Weindl,
Forschungszentrum Karlsruhe, PEA, Postfach 3640, D-76021 Karlsruhe, Germany

B. Jeram, M. Juras, K. Kenda, I. Kriznar, B. Lesjak, K. Mele, T. Milharcic, M. Perko, M. Peternel,
U. Platise, M. Plesko, M. Smolej, R. Sabjan, G. Tkacik, I. Verstovsek, B. Zorko, K. Zagar,

 J. Stefan Institute, Ljubljana, Slovenia

Abstract

ANKA [1] is a 2.5 GeV synchrotron radiation light
source being built in Karlsruhe, Germany. The control
system for the accelerator is based on the three-tier
standard model architecture. However, modern products
based on standards in distributed objects and networking
are applied in addition to low-cost hardware including
PCs. We use the LonWorks field bus network with
intelligent nodes and standard I/O modules to connect
the individual devices directly to PCs that run device
servers under Windows NT. Those PCs act as WWW
servers for data transmission, application distribution
and documentation retrieval. Applications in the control
room run also on Windows NT hosts as WWW clients.
However, they could run in any Web-browser on any
platform, because all operator control is performed
through a Web-browser with Java applets/applications.
The communication with the control system data servers
is done through CORBA. CORBA objects are wrapped
in JavaBeans which are simply connected with
commercial data-manipulation and visualization Beans
into full-fledged applications or applets. First
experiences with this control system during the operation
of the ANKA microtron are presented.

1 INTRODUCTION
The control system (CS) of the accelerator is based on
client and server PC’s running under WinNT and the
LonWorks field bus with intelligent nodes and standard
I/O modules to connect the individual devices directly to
the server PC’s. These server PC’s communicate via
CORBA with client PC’s in the control room. All
operator control is performed through Java
applets/applications.

The first real-world test of the system was on the 53
MeV microtron of ANKA during the period from
October 98 to March 99, controlling it’s vacuum system
and power supplies successfully.

*
 Email: schieler@anka.fzk.de

2 CONTROL SYSTEM ARCHITECTURE
The control system architecture is planed to be as
homogeneous as possible from the operator’s point of
view. The CS is designed to use existing intranet/internet
infrastructure and web technologies such as
HTML/HTTP, web browsers/servers with Java and
CORBA/IIOP. This decision was made because
nowadays a large proportion of people are familiar with
web browsers and because the WWW standards provide
equal user interface to any information regardless of its
type.

Technically, the control system follows the three-tier
standard model architecture:
1. the field bus layer with devices;
2. the process control layer with accelerator objects;
3. the visualization layer with control GUIs.
Conceptually, it is composed of two layers, connected
through the device servers:
1. the field bus layer with asynchronous event-driven

data acquisition/control;
2. the object oriented layer with a model of devices

where the client talks to devices as if they were
there.

Following, an overview of the different layers is given.
Further details can be obtained from [2],[3],[4],[5].

2.1 The Field Bus Layer

The LonWorks field bus is a powerful data acquisition
and networking system that connects up to 32000
intelligent nodes with I/O modules directly to a PC that
runs under Windows 98/NT. The PC interface is
connected to all device interfaces through a twisted pair
cable. On the Server PC, the LonWorks Network Service
(LNS) management tool is used to register each node.
LonWorks technology offers a complete network system
in hardware and software in a single micro-controller
(the Neuron chip) and eliminates any need for network
programming. Many LonWorks boards are commercially
available, however it is also relatively straightforward to
interface own designs to the Neuron chip. After a careful

0-7803-5573-3/99/$10.00@1999 IEEE. 658

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

analysis of the ANKA CS I/O requirements, three I/O
boards were designed that cover most cases:
• Ariadne is a serial interface board, which supports

EIA-232, EIA-422 and EIA-485 standards at
maximum baud-rate of 115kbps. It has 16k bytes
long buffers on receive and transmit lines and an on-
board power supply unit that can source current
from 230 V AC line, unregulated 7-12 V DC and
regulated 5 V DC.

• Zeus is a high precision I/O card with a 16-bit ADC
and DAC, DAC trigger input, and optically isolated
digital channels (8 inputs and 8 outputs). Four
analog channels with a nominal sampling frequency
of 1 kHz are multiplexed to the ADC, which is
oversampled at 4 kHz to ensure 0.3 LSB precision.
The DAC operates at a maximum rate of 10 kHz.
An additional on-board peripheral micro-controller,
specially designed to control booster and storage
ring power supplies includes: a) function generator
synchronized with DAC trigger input, b) 32 kb of
memory to buffer DAC function and ADC data and
c) peripheral self test.

• Hera is a digital I/O card with 24 inputs (50 mA), 8
in-/outputs (50 mA) and 8 outputs (solid state relays,
1 A). All I/O’s are optically isolated. Two operating
modes are provided for inputs and in-/outputs. There
is also a 16-bit frequency counter with range of 0-
100 kHz (absolute error 1.53 Hz).

The software written for the Neuron chips implements
quite complex functions such as state machine and
alarms, synchronous ramping in 0.1 millisecond steps
and others. The communication to the PC is done by the
device servers using the LCA (LonWorks Component
Architecture) and LNS library through network variables
and remote command invocation, which allows also
network management. On top of this, additional
functionality was written, such as a template compiler
and a file transfer protocol, which loads all run-time
constants at start-up from a centralized database. Thus,
each constant that is used by the Neuron and the PC
clients and servers is stored in one place only, which is
the static database.

2.2 The Process Control Layer

Controlled devices are modeled as objects residing on
device servers that run on the process control layer. The
objects are exposed to remote clients through their
interface only. The Accelerator Control Interface (ACI),
a language independent collection of interfaces based on
network distributed objects is using the CORBA
standard. All common accelerator components such as
power supplies, vacuum, RF, position and current
monitors are defined by means of functions and
parameters. The devices are described according to
CORBA with the Interface Definition Language (IDL),
which presents a language-independent way of defining

object interfaces. Each controlled parameter, called
device property, is an object by itself, implementing
atomic actions such as get/set, increment/decrement, etc.
All constants related to a property such as min/max,
name, description, etc. are obtained from the property
directly by means of remote methods - no direct database
access is necessary. Values of the properties are updated
asynchronously by means of monitor objects. The ACI is
meant to be a standardised interface so that applications
and pieces of control systems can be hooked to it from
either side. The ACI does not replace existing control
system architectures and frameworks but rather tries to
use their features in order to be as compatible as possible
to those systems. CORBA automatically generates the
appropriate communication libraries. There is no need to
write other API libraries. CORBA is chosen for this
reason and due to its platform and language
independence. The need for speed and the necessity to
communicate with external drivers require the servers to
be written in C++.

The communication between clients and devices is
completely asynchronous. Server’s responses to client’s
requests are made via callbacks. There is also a
possibility of using ”repeated callbacks” – called
monitors. The idea is that clients are able to register with
servers about which data they require and how
frequently it has to be obtained.

2.3 The Visualization Layer

Every operator’s interaction with the control system goes
through the control GUIs, written as Java applets/
applications. These applications are build around the
Java bean model. A Java bean is a component that can be
manipulated in a visual builder environment; beans can
be graphically arranged and connections between them
established. The latter include, for example, event-to-
method connections, where the event in one bean triggers
the method in the other; property-to-method connections,
where a change in property triggers the method;
property-to-property connections and so on. Such
environments enable the programmer to build an
application without typing a single line of code.

Any accelerator application is composed of two types
of beans:
• visual beans (GUI objects like buttons, gauges,

charts, ...);
• accelerator beans (called Abeans; each Abean

represents a real accelerator device).
An Abean encapsulates all remote calls from the client

to a device server of the process control layer. Thus the
network is invisible to the user of Abeans. Tasks of an
Abean include opening the connection and performing
the function calls on remote objects; report and manage
all errors/exceptions/timeouts arising from network
communication, provide handles for asynchronous
messages, etc.

659

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

Visual beans are mostly commercial products.
Therefore the work done in building a control panel for a
device consists mostly of connecting the appropriate
Abean and commercial visual beans in a visual builder.
The developing time is low, of the order of hours for a
panel, or one or two days for a full-fledged application
that instantiates and interconnects many Abeans - even
of different devices.

 3 THE CONTROL SYSTEM SETUP FOR
THE ANKA MICROTRON

The microtron is the first part of the ANKA accelerator
available. In fact, this is a less extensive setup for the CS
than the complete storage ring will be, but it is the first
real-world use of the CS and the first possibility to
collect experience. The CS for the microtron consists of
the following hardware and software components:
• Two PCs, a Client and a Server PC, both running

under WinNT 4.0 with PII/266MHz CPUs and 128
MB of RAM, connected via TCP/IP.

• The Client PC runs all client GUIs, written as Java
applets/applications. They are designed as tables,
including all devices of one type (e.g.: all power
supplies) or as panels, one for each single device.

• All device server C++ programs are running on the
Server PC. For every kind of device type there is
one server application, acting as software interface
between client GUI and device, delivering values to
clients and commands to devices.

• Server programs and client applications
communicate using the CORBA implementation of
Visibroker (Inprise).

• One LonWorks field bus interface card in the Server
PC is connected to all I/O interfaces through one
twisted pair cable. This is the field bus branch the
device server programs use to communicate with the
following I/O interfaces and their corresponding
devices:
a) 5 Ariadne serial interfaces for power supplies,
b) 30 Zeus I/O boards for power supplies and

vacuum gauges,
c) 2 Hera digital I/O boards for vacuum valves, -

pumps and -pump power supplies.

 4 FIRST EXPERIENCES
During the first test for the CS with the microtron setup,
no principle problems ocurred, and so it was possible to
run the microtron successfully in this environment.

The field bus and device part implements most work,
because all nodes must be registered and database values
for every device have to be set. Once done, only device
server executables and clients must be started for
running the configurated CS.

Control System GUIs are clearly designed with
logical, mostly self-explaining functionality and

displays. Representing one single device, a panel shows
virtually all necessary values and properties one may
expect from the real device. Saving desktop place and
preventing confusion, a table gives a comprehensive
overview, listing all devices of one type and offering the
possibility to control several devices at once.

Network communication raised no serious problems,
neither the quantity of LonWorks nodes on the field bus
branch, nor CORBA. Operators could work with clients,
not caring about network details or problems.

Using Abeans in the Java Bean concept allows an easy
extension of new client applications. Only Java
knowledge is necessary, while client-server
communication details are hidden in the Abeans.
Connecting Abeans with beans using visual
programming can deliver a lot of values and funcionality.
So much time is saved because of less code typing.

Fundamental changes/extensions in the software are
sophisticated, because much knowledge is necessary to
manage all layers of the CS.

The three different types of I/O interface boards are
enough for running the microtron, but for future
purposes additional interface types (e.g.: GPIB to TCP/IP
converter) may be required.

PC requirements are high, because the CS needs a lot
of resources. Each actual server or client application uses
about 20 MB of RAM, some even more.

 5 CONCLUSION
In general, the first real-world test of the Control System
was successful. There were no principle problems
controlling the microtrons vacuum system and power
supplies, so that the commissioning of the microtron was
possible in this environment.

Of course, the present microtron version of the CS
software is not perfect, therefore some changes and
extensions have to be made. The CS has to be optimized
concerning performance and user-friendliness and the
control of RF systems and the power supply ramping has
to be added for further use in the booster synchrotron and
the storage ring of the ANKA light source.

6 REFERENCES

[1] D. Einfeld et al.,”Status of the accelerator for the 2.7 GeV light
source ANKA in Karlsruhe”, Proc. PAC ‘99, New York , (1999)

[2] M. Dach et al., “A Control System Based on Web, Java, CORBA,
and Fieldbus Technologies”, PCaPAC99 workshop, Tsukuba,
(January 1999)

[3] K. Kenda et al., “I/O Control with PC and Fieldbus”, PCaPAC99
workshop, Tsukuba, (January 1999)

[4] M. Plesko, “Implementing Distributed Controlled Objects with
CORBA”, PCaPAC99 workshop, Tsukuba, (January 1999)

[5] G. Tkacik et al., “Java Beans of Accelerator Devices for Rapid
Application Development”, PCaPAC99 workshop, Tsukuba,
(January 1999)

660

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

