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Abstract

The interaction between a modulated, intense electron
beam and a single-mode rf cavity is discussed. A formal-
ism is described which accounts for steady-state and tran-
sient beam loading, input/output waveguide coupling, and
finite Q effects. A circuit equation is analyzed for short-
time behavior. Algorithms are presented for designing de-
tuned structures to ensure longitudinal stability in relativis-
tic klystron two-beam accelerators.

1 FUNDAMENTAL ELEMENTS AND
DYNAMICS

We are specifically concerned with the interaction of the
beam with the fundamental monopole mode (TM010) in
a single standing-wave (SW) idler or output cavity. We
express the cavity electric field as a product of a time-
dependent mode amplitude with a spatial mode profile (in-
dexed by�),

�!

E (�!r ; t) = a�(t)
�!

E�(�!r ): (1)

The spatial profile of the mode is assumed to have the so-
called ’Slater’ normalization,Z

cavity

d3r
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The other dynamical quantity is the current density rep-
resenting the beam travelling through the cavity structure.
We define a modal current density,J�(t), by computing
the overlap of the time-dependent current density with the
spatial profile of the mode electric field, as in (2).

We may write down an equivalent circuit equation de-
scribing the time evolution of the mode amplitude due to
excitation by both the external rf current drive and the in-
coming waveguide mode, and losses from wall heating,
beam loading, and coupling to the outgoing waveguide
mode [1] [2], �
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For quasi-steady-state harmonic oscillation at the mod-
ulation rf frequency, we express the time-dependence of
the rf amplitudes asa�(t) �= ca� cos(!bt + '�), J�(t) �=cJ� cos(!bt), V �1 (t) �= bv� cos(!bt+ '�).
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1.1 Normalization of the Cavity Electric Field

We only consider theon-axislongitudinalelectric field pro-
file and assume that it is only a function of longitudinal po-
sition (z), with a separable time dependence. The values
of the field and its derivatives along the axis are used to
generate all other electric and magnetic field components
(permitted by symmetry) near the axis by construction of
the vector potential.

Without the detailed description of the total electric field
profile throughout the entire cavity, we are unable to nor-
malize the modes according to the Slater prescription (2).
However, this normalization may be done when the modes
are initially generated by electromagnetic codes [Superfish,
URMEL, MAFIA, GdfidL, et. al.]. This can be performed
through a combination of analytical modeling of the on-
axis field profile with numerical calculation of the [R/Q].
This relates the on-axis voltage seen by the beam to the
total energy stored in the cavity, and introduces a normal-
ization constant,N�. In terms of the modal fields, theac-
celerator[R/Q] is
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: (4)

For a Gaussian distributed on-axis longitudinal electric
field component, with RMS width� in z, the normaliza-
tion constant is
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This defines the connection between the modal fields used
in the circuit analogy, and the fields used in determining the
beam dynamics. We refer to this definition of the field as
the ’line voltage’ normalization.

1.2 Periodic Klimontovich Current Distribution

The connection between the discrete particle description
employed by the tracking code and the current density used
in the circuit equation is made by appealing to the Klimon-
tovich distribution.

Since the amplitude of the modulated current density
varies only very slowly on the rf time scale, the charge
per bunch and the distribution function appear to be pe-
riodic when observed over a few rf periods’ duration. We
describe the time dependence of the charge density distri-
bution by expanding in a Fourier series basis defined over a
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single rf period. The relativistic nature of the beam allows
us to neglect the transverse current density components.

The modal current density at timet0 is calculated to be

J�(t0) = Ib

DR
cavity

dzEz� (�!r?; z)
E
+

+2Ib
P1

l=1

DR
cavity

dzEz� (�!r?; z) cos [l!b (t0 � t(z))]
E

For the beams we consider here, only thel = 1 term is
necessary to retain for the monopole mode. Higher-order
azimuthal modes may couple to higher harmonic compo-
nents in the beam’s spectrum.

We have denoted with angular brackets an average over
the bunch distribution. Here,t(z) is the arrival time at
beamline positionz with transverse offset�!r? of an element
of the current density. It will be convenient to use the real
parts of complex-valued quantities. We will define,

ew (!;�!r?) =

Z
cavity

dzEz� (��!r?n; z) exp [�i!t(z)] : (6)

The particular function defined by (6) plays an extremely
important role in the dynamics of the beam and the evo-
lution of the cavity field amplitude. It serves to define
the cavity voltage, and hence the mode [R/Q] and shunt
impedance. It contains transit time effects, and when ap-
plied to beam particle trajectories in the presence of a back-
ground rf field, it will compute beam loading contributions
to the shunt impedance and the net energy deposited into
the mode. We will refer to it as themode transit function.

2 ANALYSIS OF THE CIRCUIT
EQUATION

Two distinct time-scales of interest exist in these problems.
A fast time-scale, where variations occur within an rf pe-
riod, and a slow time-scale. The latter can be the fill time of
the cavity (TF ), the rise time of the driving current, or some
other relevant time-scale. The mode amplitude and current
density are modulated at the fast time-scale. But the evo-
lution of the amplitude as well as any phase drift occurs
on the slow time-scale. As a result, we may re-write the
governing circuit equation in terms of these slowly-varying
quantities and the slow time-scale.

2.1 Slow Time-Scale Equation of Motion

Introducing slow time variations into the modal amplitudes
and phases:ca� = ca�(t), '� = '�(t), cJ� = 2Ib(t)


 ewy�,cv� = cv�(t), '� = '�(t). These functions are required
to be slowly varying in time with respect to the rf period.
Substituting these into the circuit equation , and neglect
second-order time derivatives of slowly-varying quantities
to obtain, �
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This equation can be simplified by introducing a volt-
age normalization. We define an on-axis cavity cir-
cuit voltage, and forward and reverse port voltages viaeVc =

�fw0ca�e�i'��, fVF =
� ew0bv+e�i'+

V1�

�
, andfVR =� ew0bv�e�i'�

V1�

�
, wherefw0 = ew (�!r? = 0; !b). As defined,

these voltages are complex-valued. The bunch-averaged
accelerator shunt impedance is defined throughRb =
Q� h[R=Q]i, where��

R

Q
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=

2fw0 
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: (8)

The shunt impedance as defined here is a complex-

valued quantity, but that it can be expressed as,
Dh
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quantity, andFb is a complex-valued bunch distribution-
dependent form-factor, with magnitude of order unity. The

shunt impedance is given byR� = QL

h
R
Q

i
�
.

Using the continuity condition [2], we may express the
reverse voltage in terms of the cavity and forward voltages,fVR = eVc � fVF . From standard microwave terminology,
we recall the definitions of the tuning angle, (tan =

QL

�
!�
!
� !

!�

�
), cavity fill-time,TF = 2QL

!�
, and coupling

parameter,� = Qwall

Qext
. We introduce the phase change in

a fill time, � = !TF , and� = (1 + i tan ). Finally, we
re-scale the time dependence by the fill time,� = t=TF , to
obtain

eVc0 + � eVc = 2�
�+1

fVF �1 + i
�
fVF 0=fVF� (9)

�R�FbIb
�
1 + i

�
I0b=Ib

�
;

This is the main result of this section. We do not attempt to
find a global solution over time, which requires inclusion
of the self-consistent interaction of the cavity back upon
the beam. Rather, we will seek a local solution, valid only
over a short time duration (though still long compared to
the fast time scale), as an approximation to use within the
numerical simulation. We will take the form factor,Fb, as
approximately constant over the interval.

2.2 Observed Fields and Power Flow

Of interest is the amount of rf power flowing into and out
of the cavity. This power flow is derived from the Poynting
flux. The net rms power flowing in the waveguide, again
assuming a single mode, can then be shown to be

P+ =
�0!�
2Qext

�����
fVFfw0

�����
2

; P� =
�0!�
2Qext

�����
eVc � fVFfw0

�����
2

denoting the forward and reverse rms power flows in the
connecting waveguide, respectively. Note that the reverse
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voltage has been expressed in terms of the forward and cav-
ity voltages.

3 INTERNAL BUNCH DYNAMICS AND
THE AVERAGED SHUNT IMPEDANCE

In the usual linac formulation, the functionew0 is calculated
by assuming a constant velocity,�0, of particles through
the cavity. In that caset(z) = t0 + (z � z0)=(�0c) . Here,
we allow for intra-bunch particle motion resulting from a fi-
nite beam energy spread, and from the influence of rf fields
generated from the interaction of previous bunches with the
cavity. We determine the value oft from the fiducial orbit.

For a SW monopole mode, we use

Ez�(�!r?; z) = f0(z) + r2?f2(z) + r4?f4(z) + � � � (10)

and the auxiliary functions are (primes denoting total
derivatives with respect to z)

f0(z) = Ez�(�!r? = 0; z) = N�e0(z);

f2(z) = �1=4N�(e
00
0 + k20e0);

f4(z) = 1=64N�(e
(iv)
0 + 2k20e

00
0 + k40e0);

andk0 = !�=c. We re-write the mode transit functions as

ew �=
R
cavity

dz
�
f0(z) + r2?f2(z) + r4?f4(z)

�
�

� exp [�i!bt(z)] :

For the beams of interest to us for RK-TBA devices, the
longitudinalphase space is characterized by bunches which
subtend a significant fraction of the rf wavelength. The
bunch-averaged shunt impedance is evaluated by taking av-
erages over the spatial and phase coordinates of the parti-
cles in the bunch. This serves to define the bunch-averaged
form factor,Fb.

4 DESIGN OF IDLER AND OUTPUT
CAVITIES

The collection of idler and output cavities in an RK-TBA
requires detailed design so that its rf properties match the
demands of the device in terms of beam transport stability
and output power production. In particular, the resonant
frequency and loaded Q-value of a cavity determine the
longitudinal impedance seen by the beam. This impedance
is tuned inductively to counteract the (capacitive) effects of
space charge debunching and loss of rf current carried by
the beam.

4.1 Steady-State Scaling

In this section, we consider the steady-state behavior of the
beam-cavity system. We neglect the energy spread of the
bunch as it passes through the cavity, and further assume
that the individual particle velocities remain constant (the
’linac’ approximation). The arrival time at the center of
the cavity of a given particle is given byt(z) = t0 + (z �

z0)=(�0c)+bs=c. The distribution in arrival time (bs) is taken
to be gaussian. Following the phase convention of (6), we
sett0 = 0. The transverse distribution is also taken to be
gaussian, and essentially static. We take the bunch distri-

bution to beg (�!r?; bs) =
exp

�
� r

2

?

2�
2
r

�
2��2

r
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�
� bs2

2�
2
s

�
p
2��s

, so that

ew = fw0 exp (�ikbbs) = N� exp
�
�

k2
b
�2

2�2
0

�
exp (�ikbbs),

wherekb = !b=c. And, in this case, the bunch-averaged

form factor is real-valued,Fb = exp
�
�

k2
b
�2
s

2

�
: We can

find the steady-state power flow out of the beam and into
the wall and into the reverse waveguide mode,

P b = R�I
2
b cos

2  exp
�
�k2b�

2
s

�
;
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Qw
R�I

2
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�
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;
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QL

Qext
R�I
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b cos

2 exp
�
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2
s

�
: (11)

4.2 Beam Energy Modulation

The beam energy distribution undergoes modulation from
this field. The modulation of beam energy (
) is then

4
 (bs) = �
R� jIbj

mec2= jej
exp

�
�
k2b�

2
s

2

�
cos cos ( + kbbs) :

(12)
The cavity interaction thus produces a correlation between
arrival time and energy.

4.3 Inductive Detuning for Beam Stability

The energy modulation imposed upon the beam by its inter-
action with the cavity contains a sinusoidal variation with
arrival time and a phase offset determined by the cavity tun-
ing angle. The tuning angle contains two free parameters,
!b andQL. For RK-TBA applications, these parameters
are used to adjust the amount of energy loss experienced
between the head and tail of the rf bunch. Or, equivalently,
the average bunch energy loss and the longitudinal phase-
space rotation of the bunch. The average energy loss is
determined by the rf power required, while the bunch ro-
tation degree of freedom is used to counterbalance the op-
posite rotation (and debunching effect) of self-fields. The
average energy change for the bunch is then found to be

�
 = � P b

V0jIbj = �
(Qext=QL)P�

V0jIbj , whereV0 = mc2=e is
the electronic rest mass in voltage units.
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